
 

 1 

Transgenic reduction of cytokinin levels in roots inhibits root-sprouting in Populus  1 

 2 

Dear Editor, 3 
 4 

Summary paragraph: Root sprouts—the formation of new shoots from roots—is an important 5 

mechanism for local gene flow from poplar (Populus spp.). An effective strategy to reduce root 6 

sprout formation could therefore help to ensure containment during field research and 7 

commercial deployment of poplar when grown as exotic or transgenic forms. We used a 8 

flavonoid glycosyltransferase gene promoter from Scutellaria barbata (SbUGT) to drive the 9 

expression of AtCKX2, a cytokinin oxidase from Arabidopsis that converts active to inactive 10 

cytokinins in roots of poplar. In the greenhouse, SbUGT::AtCKX2 transgenic plants exhibited a 11 

similar shoot growth habit, but had enhanced root growth and fewer root sprouts, compared to 12 

the wild type control and transgenic events with low transgene expression in roots. Under field 13 

conditions, the transgenic trees also had similar growth habits and stem growth rates that were 14 

not statistically different from wild type trees over three years. Removal of trunks generally 15 

induced high rates of root sprouting; however, in selected SbUGT::AtCKX2 transgenic poplar 16 

events there was an absence or fewer root sprouts compared to wild type trees, consistent with 17 

the greenhouse results. Our study demonstrates that the SbUGT::AtCKX2 gene can effectively 18 

inhibit root sprouting of poplar trees under field conditions, and thus may provide a useful tool to 19 

address concerns associated with local tree and transgene spread.  20 

 21 

Poplar (Populus spp.) includes woody crops that are important for a variety of uses and products, 22 

including pulp, bioenergy, wood, bioremediation, wind protection, and agroforestry.  Although 23 

transgene-free methods have been developed using the CRISPR/Cas system to improve perennial 24 

plants such as poplar, transgenic technologies are still powerful means to create new traits (Chen 25 

et al., 2018). Transgenic technology has been effectively used to produce poplar trees with a 26 

variety of useful traits, including herbicide resistance, biotic and abiotic tolerance, improved 27 

growth rate, higher nutrient use efficiency, and improved processing and end-use characteristics 28 

(Yang et al., 2009; Chang et al., 2018). Although many transgenic field trials have been carried 29 

out in the US, China, and elsewhere, no transgenic trees have been commercially adopted to our 30 

knowledge (Li et al., 2016; Klocko et al., 2018).  31 

 32 

For most tree species, gene flow primarily occurs through seed and pollen (DiFazio et al., 2012). 33 

A number of molecular confinement strategies have been reported that may block seed and 34 

pollen-mediated transgene flow in tree species (Klocko et al., 2018). We have also recently 35 

demonstrated that an AGAMOUS intron-driven expression of a cytotoxin gene can be used to 36 

produce flowerless tobacco, and this technique may also be effective in reducing pollen- and 37 

seed-mediated transgene flow in poplar (Li et al., 2016). Further, we have reported a transgene 38 

deletion technology called the Gene Deletor that might be useful in eliminating transgenes from 39 

pollen and seeds of poplar, possibly obviating the need for containment (Luo et al., 2007).  40 

 41 

For many plant species, including poplar trees, root sprouts are another vehicle for spread of 42 

transgenes. In general, root sprouting is common in poplar in both natural and commercial 43 

plantings (Jean et al., 2019). When the trunk of a poplar tree is removed or damaged, sprout bud 44 

primordia from roots will develop and grow to produce shoots. The ability to grow new ramets 45 

via root sprouting can be extensive and repetitive, making poplar difficult to eliminate from field 46 
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plantings. Also, after many years, poplar root sprouts can spread to form extensive clonal 47 

colonies, extending from many meters to kilometers (Wiehle et al., 2009; Stener et al., 2018). 48 

Further, traits, such as faster growth, improved water use efficiency and pest resistance, could 49 

create additional concerns if these genes were to spread to the native flora (Strauss et al., 2015). 50 

For small scale plantings, sprouts can be controlled by hand pruning and/or by repeated use of 51 

herbicides. However, for large scale plantations, it can be difficult and expensive to eliminate 52 

root sprouts entirely, making full compliance with regulatory requirements for transgenic field 53 

trials difficult.  54 

 55 

The plant hormone cytokinins play a role in root sprouting.  Exogenous cytokinins may stimulate 56 

root sprouting in poplar (Frey et al., 2003). Over-production of cytokinins in transgenic plants 57 

using the Agrobacterium ipt gene resulted in enhanced adventitious shoot development from 58 

both callus tissues and unwounded plants (Smigocki and Owens, 1988).  A high ratio of 59 

exogenously applied cytokinin/auxin enhances root sprouts in Emmenopterys henryi (Guo et al., 60 

2017), and the positive effects of auxin depletion on shoot initiation in citrus was shown to be 61 

mediated by cytokinins (Hu et al., 2017). Overexpression of a cytokinin oxidase (CKX) gene has 62 

also been shown to affect shoot development. Cytokinin deficient transgenic Arabidopsis, 63 

tobacco, and orchid that over-expressed CKXs showed improved root growth but reduced shoot 64 

initiation and growth (Werner et al., 2003; Werner et al., 2010). CKX overexpression also led to 65 

fewer shoots and flowers (Werner et al., 2003), while overexpression of a CKX gene driven by a 66 

root-predominant promoter caused few observable effects on shoot growth and development in 67 

both Arabidopsis and tobacco (Werner et al., 2010; Li et al., 2017).  68 

 69 

In this study, we first used the root-dominant promoter SbUGT (Chiou and Lin, 2010; Li et al., 70 

2017) to control the expression of the GUS reporter gene and CKX2-coding sequence. The 71 

SbUGT::GUS fusion gene was predominantly expressed in roots of transgenic poplar trees 72 

(Supplemental Fig. S1a). We were able to detect CKX2 gene expression in roots for all 121 73 

SbUGT::CKX2 (CKX2) transgenic poplar events produced, of which 92 insertion events (76%) 74 

had no detectable CKX2 expression in shoots (Supplemental Fig. S1b); the remaining 29 events 75 

(24%) exhibited modest but visible CKX2 expression in shoots. More than 80% (98 events) 76 

showed visibly similar shoot growth compared to wild type. The remaining 20% showed reduced 77 

shoot growth similar to constitutive overexpression of a CKX gene, presumably due to leaky 78 

expression of the CKX2 gene in leaf and stem tissues (Werner et al., 2003). The root-79 

predominant SbUGT promoter sequence has been used previously in our lab to control the 80 

expression of GUS reporter gene, iaaM and CKX2 genes in roots of tobacco (Li et al., 2017). 81 

Here, we further demonstrate that the SbUGT promoter is predominantly expressed in roots of 82 

poplar. The SbUGT promoter appears to be a novel root predominant promoter sequence in 83 

poplar and thus may provide a useful tool for transgene-mediated improvement of root growth 84 

and other characteristics in poplar and related species.  85 

 86 

Auxin has been proposed as a negative regulator, and cytokinin as a positive regulator, of root 87 

sprout development (Jean et al., 2019). We analyzed cytokinin and auxin concentrations in roots 88 

of wild type and two representative events, 117 and 97. Cytokinin (zeatin riboside) levels in both 89 

transgenic events were reduced by 46% and 88%, respectively, relative to the levels in wild type 90 

control tissues (Supplemental Fig. S1c). Also, indole acetic acid (IAA) levels in both transgenic 91 

poplar events 117 and 97 were significantly reduced by 51% and 30% of the wild type poplar 92 

 www.plantphysiol.orgon July 31, 2019 - Published by Downloaded from 
Copyright © 2019 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

 3 

roots, respectively (Supplemental Fig. S1d). These results suggest that the reduction in cytokinin 93 

level in root tissues is caused by root-predominant CKX overexpression, and thus contributes to 94 

the inhibition of sprout development. It has also been proposed that the auxin to cytokinin ratio 95 

may play an important role in regulating root sprouting (Frey et al., 2003; Guo et al., 2017). For 96 

event 97 which had no sprouts observed, we found a significant increase in the auxin to 97 

cytokinin ratio when compared to that of the wild type roots (i.e., 242 vs. 42). On the other hand, 98 

for event 117 that also had no sprouts, the ratio of root auxin to cytokinin did not appear to 99 

increase compared to wild type (i.e., 38 vs 42). It is therefore unclear whether the auxin to 100 

cytokinin ratio plays a significant role in regulating root sprout development. Further analyses of 101 

the concentrations of the different types of active cytokinins would improve our understanding of 102 

their effects in regulating root sprout formation of poplar trees, and should be a priority for 103 

further studies. 104 

 105 

After three months of growth in a greenhouse, the trunks of wild type controls and 98 CKX2 106 

transgenic events with similar shoot growth were removed at 2 inches above the soil surface and 107 

the number of root sprouts of each tree was recorded six months later. We observed that 57% (56 108 

events) of the CKX2 transgenic poplar trees produced no root sprouts, 26% (25 events) produced 109 

a reduced number of sprouts, and 17% (17 events) produced a similar number of sprouts as the 110 

wild type poplar trees (Supplemental Fig. S2, Supplemental Table S1). We performed reverse 111 

transcription quantitative PCR (RT-qPCR) analyses for representative transgenic poplar events: 112 

three events with no sprouts (Events 97, 28, 117), four events with fewer sprouts (Events 75, 27, 113 

51, 101), and three events with numbers of sprouts similar to those of wild-type plants (Events 9, 114 

49, 125). Supplemental Table S2 shows that relatively high CKX expression was detected in the 115 

roots of three events with no sprouts, medium expression levels were detected in four events with 116 

reduced numbers of sprouts, and events that produced sprouts similar to that from wild-type 117 

poplar plants had less than 0.5% of the expression levels of the UBQ gene in roots. It therefore 118 

appears that the expression level of the CKX gene in roots is negatively correlated with the 119 

number of root sprouts.   120 

 121 

We then selected five representative CKX2 transgenic poplar events to retest the response to 122 

trunk removal under both greenhouse and field conditions. These CKX2 transgenic poplar events 123 

included three (97, 28, and 117) that produced no sprout shoots and two (27 and 101) that 124 

produced fewer sprout shoots relative to the wild type. In the greenhouse, each event was 125 

propagated and grown for one year before removal of their trunk (Fig. 1a). Wild type trees 126 

produced 2.6 sprout shoots per plant on average. The propagated replicates of CKX2 transgenic 127 

events 27 and 101 produced fewer root sprouts than the wild type plants under the same 128 

conditions, 1.0 and 1.2 per plant on average, respectively (Table 1). Further, all vegetatively 129 

propagated replicates of CKX2 transgenic events 28, 97 and 117 failed to produce any root 130 

sprouts under greenhouse conditions (Fig. 1b and c). The sprouting abilities of these propagated 131 

poplar plants were consistent with those of their parental plants. Plants evaluated under field 132 

conditions were allowed to grow for three seasons before trunk removal (Fig. 1d).  One growth 133 

season after the removal of their trunks, wild type poplar trees produced 5.0 root sprouts per 134 

plant on average, while events 27 and 101 produced 1.8 and 2.7 sprouts, respectively. Further, all 135 

replicate plants of events 28, 97, and 117 produced no sprouts (Table 1). These results are 136 

consistent with the observations in the greenhouse studies (Fig. 1e-h). Our results demonstrate 137 

that the SbUGT::AtCKX2 gene can effectively inhibit root sprouting of poplar trees under both 138 
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greenhouse and field conditions. 139 

 140 

Five selected representative transgenic events exhibited similar shoot growth as the wild type 141 

controls in the greenhouse (Fig. 2a-d). Events 28, 97, 101, 117 had significantly enhanced root 142 

biomass when compared to wild type, while event 27 had similar root biomass as wild type (Fig. 143 

2e). Under field conditions, no significant differences were observed in the biomass index 144 

(estimated using height×diameter
2
) between the average of all tested CKX2 transgenic events and 145 

wild type poplar after three years (Fig. 2f). The effects of CKX2 overexpression in roots on tree 146 

physiology warrant further study before commercial use. The enhanced root growth observed 147 

may be advantageous or cause unintended effects, for example, on drought tolerance or long 148 

term stem productivity. These effects are likely to be highly soil and environment dependent, and 149 

thus are difficult to judge from a single field study.  Further, we have not studied whether CKX2 150 

overexpression also affects propagation from stem cuttings-the main method by which poplars 151 

are amplified for commercial use.  Hopefully, by selecting events with optimal root expression, 152 

or ultimately using a more cell-specific root dominant promoter, a system can be developed 153 

which strongly suppresses root sprouts without any undesired physiological effects.      154 

 155 

In summary, we have shown that overexpression of CKX2 driven by a root predominant 156 

promoter SbUGT resulted in reduced levels of cytokinins in roots of poplar. We have further 157 

shown that under both greenhouse and field conditions some SbUGT::CKX2 transgenic poplar 158 

events exhibited no visible alterations of shoot growth, but did exhibit enhanced root growth, 159 

compared to wild type trees. Finally, we have demonstrated that some of the same 160 

SbUGT::CKX2 poplar events did not produce root sprouts under both greenhouse and field 161 

conditions. These results suggest that this technology may be useful to eliminate or reduce sprout 162 

shoot development in poplar, as well as other root sprouting plant species. The root sprout 163 

repressing approach described here may provide a useful tool to address sprout-mediated gene 164 

flow and related problems for transgenic poplar and other woody plant species. 165 

 166 

 167 

  168 
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Supplemental Data 169 

The following supplemental materials are available. 170 

Supplemental Materials and Methods. 171 

Supplemental Figure S1 Root-dominant expression of CKX2 resulted in reduced cytokinins 172 

content in roots. 173 

Supplemental Figure S2 Sprouts number of nine wild type (WT) ramets and 98 independent 174 

transgenic events. 175 

Supplemental Table S1 Data of sprouts number of wild type (WT) ramets and independent 176 

transgenic events. 177 

Supplemental Table S2 Relative expression levels of the CKX gene in representative transgenic 178 

poplar plants. 179 
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 230 

Figure 1 An absence, or reduced, sprouting in transgenic poplars in the greenhouse and field. (a) 231 

4-month-old potted, greenhouse-grown plants. (b-c) In the greenhouse, repressed root sprouting 232 

was observed in CKX2 transgenic event 97 (c) when compared to wild type (b). (d) Images of the 233 

field test, the photo was taken in July 2016. (e-h) CKX2 transgenic events 101 (f), 27 (g) and 117 234 

(h) exhibited no or fewer root sprouts than wild type (e) plants one growth season after the 235 

excision of the trunk in the field. Photos were taken in November of 2017. The trunks are inside 236 

the yellow colored circles. Bar = 12 cm. 237 

 238 

Figure 2 Shoot and root growth in CKX2 compared to wild type poplar. (a-b) No morphological 239 

differences were observed between wild type (a) and transgenic poplar plants (b) after visual 240 

inspection after 3-months of growth in the greenhouse. (c-e) In greenhouse, overexpression of 241 

the CKX2 gene in roots of poplar gave similar shoot growth (c,d) but significantly enhanced root 242 

growth (e) when compared to wild type. (f) No statistically significant differences in stem 243 

biomass index (estimated using height×diameter
2
) were observed between transgenic and wild 244 

type plants after 3-years of growth (2013-2016) in the field according to Student’s t-test with the 245 

pooled variance at P = 0.05. Bars represent standard errors. 246 

 247 
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 1 

 2 

 3 

Genotype In Greenhouse In Field 

WT 2.6 ± 0.4 5.0 ± 0.9 

Event 27 1.0 ± 0.3 1.8 ± 0.5 

Event 101 1.2 ± 0.3 2.7 ± 0.3 

Event 28 0* 0* 

Event 97 0* 0* 

Event 117 0* 0* 

  4 

Table 1 Rate of root sprouting for CKX transgenic and wild type poplar in the greenhouse 

and field. 

Data in the table represent average number of suckers per event. At least six 

replicates were used for wild type and each transgenic event. Differences 

determined by pairwise, two-sided chi-square tests on the data before averaging. 

Asterisks (*) represent significant differences between wild-type and CKX2 

transgenic event for either greenhouse or field evaluation (P<0.05). 

 www.plantphysiol.orgon July 31, 2019 - Published by Downloaded from 
Copyright © 2019 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

 1 

  1 

Figure 1 An absence, or reduced, sprouting in transgenic poplars in the greenhouse and field. (a) 2 

4-month-old potted, greenhouse-grown plants. (b-c) In the greenhouse, repressed root sprouting 3 

was observed in CKX2 transgenic event 97 (c) when compared to wild type (b). (d) Images of the 4 

field test, the photo was taken in July 2016. (e-h) CKX2 transgenic events 101 (f), 27 (g) and 117 5 

(h) exhibited no or fewer root sprouts than wild type (e) plants one growth season after the 6 

excision of the trunk in the field. Photos were taken in November of 2017. The trunks are inside 7 

the yellow colored circles. Bar = 12 cm. 8 

 9 

 10 

 www.plantphysiol.orgon July 31, 2019 - Published by Downloaded from 
Copyright © 2019 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

 1 

 1 

 2 

Figure 2 Shoot and root growth in CKX2 compared to wild type poplar. (a-b) No morphological 3 

differences were observed between wild type (a) and transgenic poplar plants (b) after visual 4 

inspection after 3-months of growth in the greenhouse. (c-e) In greenhouse, overexpression of 5 

the CKX2 gene in roots of poplar gave similar shoot growth (c,d) but significantly enhanced root 6 

growth (e) when compared to wild type. (f) No statistically significant differences in stem 7 

biomass index (estimated using height×diameter
2
) were observed between transgenic and wild 8 

type plants after 3-years of growth (2013-2016) in the field according to Student’s t-test with the 9 

pooled variance at P = 0.05. Bars represent standard errors. 10 
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