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Abstract
Introduced pests (insects and pathogens) have rapidly increased the numbers of at-risk 
native forest tree species worldwide. Some keystone species have been functionally extir-
pated, resulting in severe commercial and ecological losses. When efforts to exclude or 
mitigate pests have failed, researchers have sometimes applied biotechnology tools to 
incorporate pest resistance in at-risk species to enable their reintroduction. Often erro-
neously equated solely with genetic engineering, biotechnology also includes traditional 
and genome informed breeding—and may provide a holistic approach toward applying 
genomic-based information and interventions to increase tree species’ pest resistance. Tra-
ditional tree breeding is responsible for successes to date, but new technologies offer hope 
to increase the efficiency of such efforts. Remarkable recent progress has been made, and 
for some at-risk species, novel biotechnological advances put reintroduction within reach. 
The high costs of reintroduction of at-risk species at necessary scale, however, will ini-
tially limit the pursuit to a few species. Successful deployment of pest resistant material 
may require improved species-specific knowledge and should integrate into and leverage 
existing reforestation systems, but these operations are sometimes rare where pest threats 
are greatest. While use of some biotechnologies, such as traditional tree breeding, are com-
monplace, others such as genetic engineering are controversial and highly regulated, yet 
may be the only viable means of achieving reintroduction of some at-risk species. Efforts 
to modify policy toward allowing the use of appropriate biotechnology, especially genetic 
engineering, have lagged. Provided that risk-benefits are favorable, policy is likely to follow 
with public opinion; in some countries, society is now increasingly open to using available 
biotechnologies. Continued engagement using the most recent advances in social science to 
build public trust, combined with a science-based collaboration among land managers and 
regulators, will generate the collective momentum needed to motivate policymakers to act 
rapidly given the speed at which forest health threats unfold and the large areas they affect.
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Urgency to reintroduce at‑risk forest trees

Introduced pests (insects and pathogens) threaten forests around the world. Due to popula-
tion expansion that drove associated market globalization during recent decades, the num-
ber of introduced (non-native) pests has increased exponentially in many regions (Aukema 
et al. 2010; Santini et al. 2013). As a result, introduced pests have had a substantial nega-
tive effect on forest ecosystems in some regions. In the United States (U.S.), for example, 
more than 450 alien pest species are present and although most cause minimal damage to 
forests, about 15 of these pest species account for a tree mortality rate of 5.53 terragrams of 
carbon (TgC) per year and threaten future loss of 41% of the total live forest biomass (Fei 
et al. 2019). Similarly, the total economic cost of common ash (Fraxinus excelsior L.) die-
back in Britain is estimated to be £14.8 billion over 100 years, with more than half of the 
total cost (£7.6 billion) expected to occur within the next 10 years (Hill et al. 2019). Intro-
duced pests may also negatively impact biodiversity and have important ecological and 
societal consequences (Mitchell et al. 2018, 2021). In addition to overall forest productivity 
and biodiversity declines, introduced pests can cause some native tree species to become 
“at-risk”, i.e., threatened by possible exposure to population-level damage, and become of 
special management concern. In the U.S., tree species are at-risk from about 90 invasive 
pest species (Alien Forest Pest Explorer 2022). The population level damage for at risk 
species varies from possible extinction, which is rare, to more commonly innocuous (Wil-
liamson and Fitter 1996). However, the 15 or so invasive species that cause severe com-
mercial and ecological loss are vexing (Fig. 1).

Well-known examples of severely threatened keystone at-risk forest tree spe-
cies include American chestnut (Castanea dentata Marshall) Borkh.) due to chestnut 
blight caused by Cryphonectria parasitica (Murr.) Barr (= Endothia parasitica (Murr.) 
Anderson & Anderson); butternut (Juglans cinerea L.), due to butternut canker dis-
ease (BCD) caused by the fungus Ophiognomonia clavigignenti-juglandacearum (Ocj; 

Fig. 1  At-risk native forest tree species of North America showing pest decline, including (from left to 
right): white ash (Fraxinus americana L.) showing larval feeding galleries under bark from the emerald ash 
borer, American chestnut (Castanea dentata) infected with chestnut blight, and stem canker on butternut 
(Juglans cinerea). Photos: DF Jacobs
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Nair, Kostichka, & Kuntz); common ash (Fraxinus excelsior L.) in Europe due to ash 
dieback from Hymenoscyphus fraxineus (Kowalski) Baral, Queloz & Hosoya (= H. 
pesudoalbidus; basionym Chalara fraxinea); ash (Fraxinus spp.) in North America due 
to emerald ash borer, Agrilus planipennis Fairmaire; and elms (Ulmus spp.) due to the 
introduction into Europe and North America  of the pathogen Ophiostoma spp. that 
causes Dutch elm disease. The list of new, at-risk species continues to expand rapidly 
(Potter et  al. 2019); for instance, whitebark pine (Pinus albicaulis Engelm.), a key-
stone species in the western U.S. was recently listed as threatened, in part because of 
the introduced pathogen Cronartium ribicola A. Dietr. (U.S. Fish and Wildlife Service 
2022).

Often these at-risk tree species remain extant (e.g., individually surviving through 
stump sprouting or regeneration via seedlings or saplings not yet old or large enough to 
be affected) but are no longer sufficiently abundant and/or of adequate size and stature 
to reproduce sexually or perform their ecological function(s), rendering them ecologi-
cally extinct (McCauley et  al. 2015, 2017). Ecological extinction, the sufficient loss 
of a tree species’ ability to influence ecological dynamics (Tilman 2001), is insidious, 
as obligate species in higher trophic levels become extinct first, causing deleterious, 
cascade effects to the ecological web (Wardle et al. 2000; Säterberg et al. 2013; Mitch-
ell et  al. 2014). These altered ecosystems may experience a lower diversity of plant 
dispersal and tree recruitment (Redford 1992) that leads to a homogenization of for-
est ecosystems, which has negative implications for forest resilience to perturbations, 
including changes in climate. Left unchecked, these at-risk tree species may develop 
truncated ranges, lose genetic diversity, and face becoming threatened, endangered, or 
extinct (Potter et al. 2017, 2019).

The well-known historical loss of some foundational tree species has led to novel 
predictive and prioritization capacity (Potter et  al. 2019) for addressing pest threats 
to at-risk species. Theoretically, the most effective approach should be exclusion or 
reducing the rate of spread of pests, but this has not been well adopted due to both 
international and intra-national constraints. For example, despite the early detection of 
emerald ash borer threats to Fraxinus spp. in North America, campaigns and regula-
tions to eliminate inter-state transfer of logs or wood and sanitation removal of infected 
trees were unsuccessful in stopping the spread of the pest, which is now ubiquitous 
across much of North America where ash occurs and has decimated ash tree popula-
tions (McCullough 2020). With few remaining alternatives to exclude threats to at-
risk species of high commercial and/or ecological value, researchers worldwide have 
implemented disease resistance programs to develop and deploy pest resistant trees 
back to the landscape (Sniezko and Koch 2017; Woodcock et al. 2018, 2019).

Some of the longest running such programs began between the 1950s‒1980s to 
develop pest resistance in species such as American chestnut, Sitka spruce (Picea sitch-
ensis (Bong.) Carrière), American elm, and white pines (i.e., Pinus monticola Doug-
las ex D. Don, P. strobus L.) and have shown some success (Sniezko and Koch 2017; 
Woodcock et al. 2019). Other disease resistance programs, such as for ash in response 
to emerald ash borer, have developed very recently. A medium to long-term approach 
and sustained investment are necessary to have potential for operational deployment of 
resistant trees using traditional tree breeding (Woodcock et al. 2019; Sniezko and Nel-
son 2022). Recent advances in tree biotechnology, however, have potential to acceler-
ate the pace and breadth of pest resistance to support reintroduction of at-risk species.
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Advancements in biotechnology put reintroduction in reach

Biotechnology refers broadly to the use of biology to solve problems (Editors of Ency-
clopedia Britannica 2022). In the context of at-risk forest tree species, biotechnology to 
reintroduce species can take many forms (traditional and genome informed breeding and 
genetic engineering or the synonymous term, genetic modification). Biotechnology is 
often erroneously equated solely with genetic engineering. Distinguishing among these 
forms may help to elucidate the multi-faceted nature of biotechnology for incorporating 
pest resistance and leverage all available biotechnologies to support reintroduction. This 
approach may provide a holistic framework toward applying genomic-based interventions 
to increase tree species’ pest resistance efficiently and effectively (Sniezko and Liu 2022; 
Nelson 2023). The need and use of these biotechnologies will depend on context associated 
with specific at-risk species (Dumroese et al. 2015). Informed and judicious use of biotech-
nologies can provide an avenue for rescuing at-risk, ecologically extinct species and mov-
ing them toward their restoration on the landscape. In addition to the aforementioned facets 
of biotechnology, other biotechnologies not discussed herein, such as biological control, 
may be integrated into pest resistance programs.

Traditional tree breeding is a biotechnology that may leverage other biotechnologies, 
such as use of rooted cuttings, grafting, and somatic embryogenesis to duplicate trees with 
desired characteristics (Merkle et al. 2023; Nelson 2023; Fig. 2). In traditional tree breed-
ing, genotypes of the at-risk species or of closely related species with desired traits are 
conserved in vitro or in situ (Engels et al. 2008) and bred for multiple generations using 
controlled pollination and subsequent selection of resulting progeny having favored charac-
teristics. This leads to combinations of genes that could occur “naturally” toward obtaining 
the desired resistance. On the one hand, traditional tree breeding has limitations because 
trees (especially conifers) have extremely large genomes, are slow to reproduce, and often 
multiple genes and their interactions with the environment are responsible for the desired 
trait(s) leading to a low heritability and slow accumulation of genetic gain over time (De 
La Torre et  al. 2014). A single breeding cycle often requires a decade or more to com-
plete (Harfouche et al. 2012). Additionally, due to its non-targeted nature, breeding for a 
desired trait (e.g., disease resistance) may result in accumulation of undesirable traits as 
well. For instance, growth of American chestnut seedlings bred with Chinese chestnut for 
blight resistance has not matched that of pure American chestnut in field plantings, despite 
several generations of backcrossing with American chestnut (Brown et al. 2022). This is 
likely because backcross hybrid trees selected for blight resistance inherent on average 17% 
of their genome from Chinese chestnut (Westbrook et  al. 2020). On the other hand, tra-
ditional tree breeding remains a powerful tool with broad social acceptability to rapidly 
enable development of resistance, especially for tree species with extensive diversity of 
resistance mechanisms and high cultural value (Luiz et al. 2023), and recent successes are 
encouraging (Sniezko and Koch 2017).

Recent and rapid advances in genomics, for example, DNA sequencing, genetic marking 
with molecular markers, and bioinformatics are providing geneticists with novel, power-
ful, potentially time-saving tools that have potential to assist to reintroduce at-risk species. 
Genome sequencing of trees provides a basis for better understanding resistance (i.e., fre-
quency, level, distribution, type, durability, stability) toward describing genes with puta-
tive disease resistance (e.g., Harper et al. 2016; Stevens et al. 2016; Stocks et al. 2019). 
Analyzing the RNA transcripts produced by the genome (transcriptomes) has potential to 
inform levels and mechanisms of resistance within a species as well as species within the 
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genus (Sniezko and Liu 2022). Genetic mapping and marker-assisted selection can assist 
in identifying genes conferring major resistance, complexes of genes that together pro-
vide elevated quantitative resistance, and describe genes that contribute to increased pest 
susceptibility (Engelhardt et al. 2018; Sniezko and Liu 2022, 2023). This information can 
be leveraged toward stacking multiple genes into a single genotype (i.e., pyramiding) to 
improve the durability of resistance (Sniezko and Liu 2022, 2023). Moreover, all these 
techniques can be used to further evaluate characteristics of the pest, rendering information 
on the mechanisms used, and potential adaptation of those mechanisms, by the pest (e.g., 
Rigsby et  al. 2015; Duan et  al. 2017). These biotechnological techniques offer promise 
for more rapid and robust selection of genotypes for inclusion into traditional tree breed-
ing programs. Achieving the full potential of these techniques will depend on overcoming 
social, biological, and economic constraints (Whetten et al. 2023).

As discussed previously, genetic engineering is often erroneously equated with bio-
technology yet is in fact simply a set of specific tools within biotechnology. We consider 

Fig. 2  Biotechnology may take many forms, with varying regulatory frameworks, and provides a holistic 
approach toward applying genomic-based interventions to increase tree species’ pest resistance. Deploy-
ment of pest resistant material achieved through biotechnology to support landscape-scale reintroduction 
is dependent on capacity to integrate into operational tree planting programs, silvical knowledge, societal 
acceptance, and public policy
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genetic engineering as “any technique that uses recombinant, synthesized, or amplified 
nucleic acids to modify a genome” (Nelson 2023) and any plant derived with such modi-
fied nucleic acids, be they cisgenes or transgenes, to be a genetically engineered organism. 
Notably, however, this field is moving rapidly in response to regulatory and policy changes. 
In the U.S., an emphasis on mechanisms of action rather than gene insertion methods or 
specific insertions is increasingly determining whether or not the result of genetic engineer-
ing could have been achieved through traditional tree breeding (Federal Register 2020), 
which affects the regulatory process. The revolutionary use of CRISPR/Cas9 (clustered 
regularly interspaced short palindromic repeats) gene editing technology, which can accu-
rately and relatively easily insert and alter DNA with targeted specificity, has intriguing 
implications for the pyramiding of resistant genes as well as removal of genes associated 
with elevated levels of susceptibility (Gorash et al. 2021). While application of CRISPR 
was recently achieved in European chestnut (Castanea sativa Mill.) (Pavese et al. 2021), 
technical and societal obstacles to its near-term use remain. These obstacles include a lack 
of knowledge to guide gene editing for traits of complex inheritance, difficulty of transfor-
mation in many important genotypes, and complexity of application in breeding programs 
(Strauss et al. 2022). Additionally, field trials are highly regulated in most countries and 
recombinant DNA-modified trees are not allowed in key forestry certification programs 
(Strauss et al. 2022).

Leveraging or refining silvicultural systems to accept pest resistant 
trees

To successfully deploy pest-resistant germplasm to reintroduce at-risk forest tree species, 
planting of nursery-grown seedlings will be needed to artificially regenerate these spe-
cies. An understanding of the biology and ecology of these species is needed to ensure 
successful artificial regeneration that may lead to re-establishment of pest resistant pop-
ulations with potential to naturally regenerate across the landscape (Jacobs 2007; Jacobs 
et  al. 2013). This species-specific foundational information can be drawn upon to guide 
seed collection, nursery seedling propagation, site preparation and planting techniques, as 
well as to manage regeneration after its reintroduction into forests. The existing knowledge 
base varies among species, often depending on the length of time that a given species has 
been extirpated from the landscape. For instance, American chestnut and American and 
European elms were functionally eliminated from forests decades before the development 
of modern principles of forest ecology (Paillet 2002) and only recently has field-based 
research been directed toward informing restoration efforts (Jacobs et al. 2013; Wang et al. 
2013; Martín et al. 2019). Other species, such as ash in North America or Europe (Pautasso 
et al. 2013; McCullough 2020), have more recently been threatened by pests and therefore 
may already have well-established methods, including planting requirements, to draw from. 
For some other recently threatened forest tree species, however, regeneration has mainly 
been accomplished naturally and prescriptions for planting establishment of such at-risk 
species may still be poorly developed, yet this knowledge is needed to successfully deploy 
pest-resistant material.

In addition to establishing a sound knowledge base to facilitate reintroduction of at-risk 
forest tree species, deployment of pest-resistant germplasm through artificial regeneration 
could logically be accomplished by integrating into and leveraging existing systems of tree 
planting operations. However, > 90% of forest regeneration in the U.S. is accomplished 
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naturally (Oswalt et  al. 2014) and at-risk species in need of reintroduction may be lack-
ing the capacity for operational nursery production and planting in respective regions of 
high priority for deployment. In the case of the continental U.S., for example, the highest 
occurrences of pests (i.e., threats) are sometimes located in regions with the lowest rates 
of tree seedling production in forestry nurseries as well as total land area planted (Fig. 3). 
This trend is most notable in the northeastern U.S., which as a global hub for trade imports 
has historically high risk of pest introduction (Fei et al. 2019), yet its forest management 
relies nearly entirely on natural regeneration for stand establishment (Bataineh et al. 2013). 
The southeastern U.S. has by far the highest rates of seedling production and planting 

Fig. 3  The cumulative number 
of pests by state putting forest 
trees at-risk in the coterminous 
United States (Alien Forest Pest 
Explorer 2022), annual forest 
tree seedling production, and 
subsequent land area planted 
(Haase et al. 2021)
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associated almost exclusively with commercial pine plantations (Fox et al. 2007), but rel-
atively lower forest pest occurrences. Although reforestation systems in the southeastern 
U.S. rarely target at-risk forest tree species, the existing nursery and planting infrastructure 
could more easily accommodate such a shift than in the northeastern U.S. This presents a 
dilemma to solve to ensure that pest resistant material can be successfully deployed across 
the landscape.

Societal perception and policy remain weakest links

Moving forward with policy that supports using biotechnology (ranging from selective 
breeding to genetic engineering) to reintroduce at-risk tree species will be challenging. The 
ensuing discussions and ultimate decisions will need to consider, meld, and communicate 
across a spectrum of science disciplines, a disparate public with a continuum of personal 
values, knowledge, and perceptions toward the topic, regulators having important respon-
sibilities to the public, and policymakers keen to satisfy constituents. Traditional, long-
standing, and widely used tree breeding to produce disease resistant trees for reintroduction 
is characterized by general acceptance among the public and relatively few policy regula-
tions in their use. Nevertheless, social acceptability of deploying specific products derived 
from traditional tree breeding, such as use of hybrids or backcross trees, is not entirely 
resolved as some uncertainty and reluctance among land managers and the public remains 
(Brennan et al. 2023; Jacobs et al. 2013). Using genetic engineering to reintroduce at-risk 
tree species is much less well accepted, although regional and demographic variation exists 
(Brennan et al. 2023; Jepson and Arakelyan 2017a, b; Marzano et al. 2019). For example, 
younger generations appear to be more open to use of genetically engineered trees in natu-
ral woodlands and forestry plantations (Jepson and Arakelyan 2017a, b; St-Laurent et al. 
2018). Here, we focus the discussion on the challenges and opportunities of framing the 
use of all forms of biotechnology to reintroduce at-risk tree species.

The public perception of and associated policy regulations of using genetic engineer-
ing in plants is primarily focused on food crops and is complex and contentious (Hallman 
et al. 2003; Costa-Font et al. 2008; Frewer et al. 2013; Jepson and Arakelyan 2017a; Mar-
zano et al. 2019). On one hand, the public may more readily support the use of genetically 
engineered trees because trees are valued for reasons beyond food, such as for watershed 
protection, wildlife habitat, carbon sequestration, and conservation (Merkle et  al. 2007; 
Gamborg and Sandøe 2010; Brister and Newhouse 2020). On the other hand, the public 
may be more hesitant to accept genetically engineered trees because trees are longer-lived 
and therefore have longer-term ecological implications (Williams 2005; Hall 2007; Merkle 
et al. 2007; Gamborg and Sandøe 2010). Indeed, public acceptance of using genetic engi-
neering to reintroduce at-risk tree species may be lacking because the intention is to have 
heritable results that persist across generations. This contrasts with other biotechnologies, 
such as with human medications, that limit effects to an individual and enjoy widespread 
public favor (Aucott and Parker 2021).

Whether the topic is climate change, microplastics, reclaimed water, genetically modi-
fied organisms, or just about anything else, humans often form opinions based on little sci-
entific data and a range of perceptions (e.g., Wunderlich and Gatto 2015; Ricart and Rico 
2019; Catarino et al. 2021). These opinions are constructed on values that lie on a contin-
uum from egoistic (concern for self), to altruistic (concern for community), to biospheric 
(concern for non-human species) (Stern 2000). Not surprisingly, environmental values 
also lie on a continuum, with support for pro-environmental policies generally thought to 
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increase with movement from egoism to biospherism (Vaske and Donelly 1999). This sim-
plistic approach becomes murky, however, because people perceive aspects of the environ-
ment, such as nature, naturalness, wildness, and health, through a localized prism that also 
includes community values and culture (Hull et al. 2010). Thus, for example, an egocentric 
individual could support a pro-environment policy perceived to provide local benefit to the 
person or community, whereas a biocentric individual, who believes that forests have an 
intrinsic value regardless of value to humans, may oppose a pro-environment policy that 
is perceived to challenge the notion that “nature knows best” and can “self-heal” (Hull 
et al. 2010). This distinction can be more fluid because an individual could, depending on 
circumstances, express all three values and be pro-environment (Snelgar 2006). Such value 
orientations, once expressed, can be slow to change (Hiroyasu et al. 2019).

Many popular opinions are made based on little scientific knowledge, and increasingly 
influenced and reinforced through social media. However, public knowledge concerning a 
particular topic or policy also runs a continuum from vague or general awareness to more 
specific, detailed knowledge (Trevethan 2017). Similar knowledge continuums are also evi-
dent among professionals within disciplines. For example, within the U.S. Department of 
Agriculture (USDA), Forest Service, land managers often have a different working knowl-
edge (and perceptions) concerning climate change amongst themselves (Rodriguez-Franco 
and Haan 2015) and compared to agency scientists actively researching the topic. And, 
within the science community engaged in exploring genetically modified organisms, other 
continuums exist. For example, research molecular biologists may approach non-knowl-
edge (defined as the absence of knowledge) from a control-oriented perspective (unknowns 
can be explored in the controlled atmosphere of the laboratory) whereas research ecolo-
gists do so from an uncertainty-oriented perspective because unknowns are often charac-
terized by complex systems with high spatial and temporal heterogeneity that span diverse 
disciplines (Böschen et al. 2006).

As noted above, acceptance and support of forest management activities are influenced 
by an individual’s values; often the public focus on historical or static forest conditions 
precludes acceptance of novel or unconventional approaches perceived to be unnatural and 
therefore riskier or unethical (Park and Talbot 2012; St-Laurent et al. 2018). Value-based 
decisions are tempered, however, with the amount of knowledge one has and the level of 
trust one has in that information (McFarlane et  al. 2006; Hajjar and Kozak 2015; Greg-
ory et  al. 2016). Public opinion must be respectfully considered and integrated because 
adoption and implementation of any forest management activity depends on public trust 
(McFarlane et al. 2012; Greenberg 2014), and levels of trust fluctuate with levels of knowl-
edge and experience. As an individual increases their knowledge and experience with a 
topic, the basis of decision-making shifts from trust in perceived experts who can make 
informed decisions to a greater reliance on personal judgement (McFarlane et al. 2012).

Developing trust in the message is vital, and scientists and environmental groups are 
perceived with the highest public trust on other contentious forestry topics, such as assisted 
migration, with the federal government, industry representatives, and politicians perceived 
less so (St-Laurent et al. 2018; Solano et al. 2022). Trust in scientists may translate to less 
perceived risk and more acceptance of interventions, but the delivery of data may or may 
not be helpful. Schuler (2004) concludes that for food GMOs, public perceptions, and not 
science, were paramount in framing the discussion, and although information can shift per-
ceptions, it is not easy, nor the only factor (Satterfield et al. 2009).

Understanding that communication is foundational to success is much simpler, and 
much different, than actual, effective communication with the public that garners, for 
example, support for using biotechnology to reintroduce at-risk species. Given the complex 
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nature of the debate, and the wide spectrums of values and knowledge across a disparate 
group of actors, how might scientists converse with others toward obtaining social accept-
ance to safely, ethically, appropriately, and holistically use tools in the evolving biotechnol-
ogy toolbox?

Listening to concerns and engaging the public are paramount for building trust. In west-
ern Canada, impacts from insects and diseases were perceived to be most detrimental to 
the well-being of forest-dependent communities (Hajjar and Kozak 2015; St-Laurent et al. 
2018). Building on this, thoughtful dialogue with the public about how introduced insects 
and diseases put native tree species at risk, and how biotechnology may be part of a holistic 
approach to reintroduce those species, should begin immediately and be ongoing (Clark 
et al. 2002; Powell et al. 2019). Members of the public are more prone to agree with oth-
ers who share their values; thus, to be successful the messaging must be delivered from 
a broad spectrum of advocates, thereby positively influencing their disparate factions. A 
major challenge is finding the correct spokesperson(s) because who delivers science-based 
information is critical (Kahan 2010). Moreover, the message from the spokesperson must 
be true and truthfully (without hidden bias) presented (Andersson et al. 2006). The likeli-
hood of a single message coalescing from diverse advocates is, however, unlikely (Syl-
vester et al. 2009). Even so, the responsibility likely falls to government to forge a coalition 
toward development of the public process to transparently, and in balanced fashion, discuss 
critical issues to assess the use of biotechnology, and thereby avoid, or begin to address, 
non-science-based opinion (Cobb and Macoubrie 2004).

While the public trusts federal government less than scientists (St-Laurent et al. 2018), a 
federally supported initiative that leads with scientists and leverages its partners and stake-
holders around a central theme that addresses and provides for diverse values may be an 
effective strategy. For example, the USDA Forest Service, which has a long tradition of 
managing forests to meet multiple use objectives, could lead communications in the United 
States. The agency has a cadre of scientists and university partners focused on molecular 
biology, genetics, ecology, and restoration, as well as NGO partners, who together could 
provide information (pros and cons) that the public trusts. The agency currently supports 
environmental, industrial, NGO, and other partners toward successfully obtaining mutually 
agreed upon diverse management objectives, such as biodiversity, rural community devel-
opment and sustainability, recreation, clean water provision, and healthy, resilient forests. 
Thus, a message from scientists and a trusted locally based spokesperson could speak to 
how all of the various facets of biotechnology may (or may not) serve as a tool to reintro-
duce populations of at-risk trees.

In creating dialogue concerning at-risk trees, a focus on ecological and societal ben-
efits rather than risk management may be prudent (Hiroyasu et al. 2019), as is providing 
opportunities for the public to participate in decisions concerning research and develop-
ment (Burri and Bellucci 2008; Barnhill-Dilling et  al. 2021). It will also be essential to 
operationalize on-going communication across governmental agencies that ultimately 
share responsibility for regulating and implementing the use of biotechnology. While a 
land management organization may promote the ecological and social benefits more than 
risk management per se, regulatory organizations, with their fiduciary responsibilities to 
society, namely a “do no harm” approach to implementation of genetic engineering, must 
necessarily focus on risks (Martín et al. 2019; Pierce et al. 2023); a regulatory process that 
balances safety, development, and use could prevent unintended ecological consequences 
without severely limiting use (Gordon et  al. 2021). These two approaches need not be 
antagonistic; realistic discussion associated with ecological processes along with perceived 
benefits must be supported with data and provide a clear pathway for resolving bias based 
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on popular opinion. Acknowledging that tree breeding programs are complex and that 
researchers must consider unintended consequences are important for building public trust 
(Martín et al. 2023). The use of forecasting (e.g., simulation models that evaluate potential 
outcomes of reintroduction prior to deployment) may afford a better discourse about poten-
tial trade-offs associated with using biotechnology, especially across scales and including 
opportunity costs (including ecosystem services) associated with or without implementa-
tion (Mozelewski and Scheller 2021). Recent work confirms that public and cultural atti-
tudes about perceived benefits and risks are strong drivers of acceptance of trees geneti-
cally engineered for resistance to introduced pests (Barnhill-Dilling et al. 2020; Petit et al. 
2021; Brennan et al. 2023).

The message shared, especially concerning genetic engineering, must be presented with 
concrete rather than vague or abstract language; eliminating jargon (e.g., Plaxco 2010) and 
providing specific examples (Tallapragada et  al. 2021) improves delivery effectiveness. 
For instance, when St-Laurent et al. (2018) surveyed western Canadians about the generic, 
undefined use of genetically engineered trees in reforestation, the result was poor support 
for the practice. When more nuanced, specific, described applications of biotechnology 
in reforestation in the central U.S. were communicated, including genetic engineering, it 
garnered high levels of support among land managers (Brennan et al. 2023). Provision of 
scientific knowledge delivered by a trusted locally based spokesperson allows individu-
als to make more nuanced decisions (Hiroyasu et al. 2019), which may be important for 
the topic of rescuing at-risk trees using genetic engineering where emphasizing ecological 
benefits may be paramount to acceptance, and for developing necessary grassroots support 
that influences policy makers (Daniels et  al. 2012). Research is clear that engaging the 
public and increasing awareness have generated support for other contentious forest man-
agement practices, such as increasing the use of prescribed fire (e.g., Loomis et al. 2001) 
and assisted migration (St-Laurent et al. 2018). It is also clear that public awareness and 
perceptions are critical to land manager willingness and ability to implement management 
practices (Archie et al. 2012).

The literature shows that the information deficit model of simply educating the public 
(Nisbet and Scheufele 2009) is no longer the sole solution to garnering support for use of 
biotechnology when and where appropriate. While scientist engagement with the public 
is paramount and can ensure a scientifically ethical approach, equally important are sci-
ence delivery and deliberate, collaborative dialogue among land managers, regulators, and 
policy makers (Barnhill-Dilling et al. 2021; Harfouche et al. 2021). Natural scientists likely 
need to re-evaluate their approach(es) to public engagement, recognizing that it is not just 
a lack of information, but rather their lack of commitment to be enablers of broader, direct 
public engagement and dialogue that is counterproductive to the needed effort (e.g., Besley 
and Nisbet 2011).

There is a need to identify and implement ways to inclusively weave diverse stakehold-
ers into the decision-making process (especially at the local level; Kofler et al. 2018), from 
research priorities to citizen science opportunities to policy advocation (e.g., NASEM 
2017, 2019; Barnhill-Dilling et al. 2021). The solution should no longer be based on the 
pretense that scientists should “give the public more information so that they can rationally 
agree with us,” but rather to foster conversations that include and respect diverse perspec-
tives, creating broad support that can result in long-term support for complex tree breeding 
programs for at-risk species. During the last decade, the biology and science related to 
biotechnology approaches in tree breeding has made remarkable progress. Efforts to affect 
policy toward allowing the use of biotechnology have, however, lagged. While investing 
resources into the biological side of biotechnology is essential, a concomitant investment 
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by natural scientists into the social science side of biotechnology may be even more impor-
tant. Support across the full spectrum of the public (i.e., scientists, land managers, stake-
holders, regulators) will hopefully motivate policymakers to react (Daniels et al. 2012).
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