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Editorial on the Research Topic

Forest Genomics and Biotechnology

Forest biotechnology can be said to have begun with the construction of the first transgenic tree. 
A bacterial gene imparting glyphosate resistance (EPSP synthase) was introduced into a hybrid 
poplar (Fillatti et al., 1987). This achievement required the development of three technologies: 
gene discovery, gene transfer, and in vitro plant regeneration. These powerful tools advanced the 
investigation of the unique biology of forest trees, including their unusual reproductive features, 
woody and perennial growth habit, and their mechanisms of adaptation to abiotic and biotic stress. 
In addition, biotechnology has advanced the practical application of molecular genetics for tree 
breeding, by expanding options for the production of pulp, wood, and energy products (Huang 
et al., 1993; Baucher et al., 2010; Allwright and Taylor, 2016).

While biotechnology established the tools necessary to modify genes, genomics provided a new 
platform for the high-throughput genetic analysis of forest trees. Genomics was founded on two 
technologies: genetic mapping and DNA sequencing. Genetic mapping provided the location of 
genes, allowing the association of their position to function. Previously, genetic maps were made using 
isozyme loci as markers (Conkle, 1980) but the number of loci that could be sampled was limited. 
Restriction fragment length polymorphisms (RFLP), PCR amplification and high throughput DNA 
sequencing led to an extraordinary expansion in the regions of the genome that could be surveyed 
(Botstein et al., 1980; Williams et al., 1990; Vos et al., 1995; Wang et al., 1998). Consequently, genetic 
maps can now be readily constructed for forest trees where genetic analysis of quantitative traits had 
been previously impossible (Kirst et al., 2004). Through genetic mapping and segregation analysis, a 
trait could be readily shown to be monogenic, oligogenic, or polygenic in genetic architecture.

Large scale genome mapping of forest trees was first carried out using haploid genetic analysis 
using conifer megagametophytes and PCR-based anonymous markers (Carlson et al., 1991; 
Grattapaglia et al., 1992; O’Malley et al., 1996). The concept of mapping with anonymous dominant 
or codominant markers was extended to diploid crosses using “pseudotestcross” strategies 
(Grattapaglia and Sederoff, 1994). As sequencing technology advanced, anonymous markers were 
replaced by sequence-based markers associated with genes, single nucleotide polymorphisms 
(SNPs) (Eckert et al., 2009) or variation in repeated sequences (Echt et al., 2011).
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Forest biotechnology has been strongly influenced by the 
human genome project (HGP) (Venter et al., 2001). The new 
technology of the HGP advanced the studies of many species 
and was important for species such as forest trees, which had 
been previously difficult due to large sizes and long generation 
times. Genome sequencing of forest trees (Tuskan et al., 2006) 
has brought about a host of new technologies (“omics”) where 
gene expression and function could be studied for single genes 
or for large gene families and even for all of the expressed 
genes in a specific tissue or cell type. Omics have been 
developed in tree species for populations of RNA molecules 
(transcriptomics), proteins (proteomics), and metabolites 
(metabolomics). All of these methods have been or are being 
applied to forest tree species (Wagner et al., 2012;Wang et al., 
2014; Wang et al., 2018).

While the new “omics” technologies characterize the 
activity of biological systems, the understanding about the 
relationship among them is complex and require mathematical 
modeling to provide predictive power (Wang et  al., 2014). 
Systems and synthetic biology of forest trees reflect the 
growing collaboration of engineering and molecular biology. 
Systems biology integrates levels of information and technology 
deriving from genomics, such as genome sequencing, 
transcriptomics, epigenomics, proteomics, metabolomics, and 
imaging. While systems biology uses information from existing 
species, synthetic biology goes beyond what already exists in 
nature by reassembling or inventing novel gene sequences and 
functions. The goals of systems and synthetic biology are to 
improve the efficiency of metabolic flux, to redesign pathways, 
or to create novel ones.

A thorough understanding of metabolic and developmental 
pathways may not only provide innovations in systems design, 
but could ultimately prove critical for survival of natural and 
planted forests. Forests around the world continue to be 
threatened by an increase in the introduction of nonnative 
pests and pathogens due to world trade and travel. Epidemics 
of native species of pests and pathogens have also increased 
due to the destabilizing effects of climate change, which 
imposes increased abiotic stress on tree populations. Many 
species of forest trees may soon be lost, affecting entire 
ecosystems and leading to loss in ecosystem services and 
biodiversity (NASEM, 2019). Biotechnology could increase 
our understanding of host pathogen interactions and could 
also aid in the development of new genotypes able to resist 
new biotic and abiotic stresses. This will require major new 
allocation of resources to studies of forest tree biology and the 
genetic modification of forest tree populations require major 
changes in highly restrictive regulations and preclusion from 
markets (Strauss et al., 2015)

This volume is organized in six sections. (1) Gene Discovery, 
(2) Gene Transfer and Genetic Engineering, (3) Genetic Mapping 
and Quantitative Trait Analysis, (4) Growth and Development, 
(5) Biotic and Abiotic Stress, and (6) Cyberinfrastructure.

(1) Gene Discovery. Great attention has been paid to 
discovery and manipulation of genes involved in wood 
formation. Motivated by industrial activity in pulp and paper 
processing, and by the use of wood for biofuels and solid wood 

products, it has become critical to identify and characterize 
genes involved in the chemical and physical properties of 
wood. Wang et al. (in this volume) have reviewed the status of 
protein–protein interactions in lignin precursor biosynthesis, 
and Chanoca et al. (in this volume) have reviewed the efforts 
made to reduce biomass recalcitrance by engineering lignin 
quantity and composition. Engineering of noncellulosic 
polysaccharides in wood is discussed by Donev et al. (in this 
volume), with the goal of modifying wood for chemical content 
(particularly sugars) and physical properties, which affect the 
interactions of hemicelluloses with lignin and cellulose. Many 
forest trees accumulate high levels of secondary metabolites 
for defense against pests and pathogens. Conifers and 
other trees such as eucalypts accumulate terpenes in wood 
that can be extracted and utilized as a renewable chemical 
feedstock. Peter (in this volume) has reviewed the status of 
genetic engineering and breeding approaches to increase 
the abundance of terpenes and thereby increase the value 
of plantation forest trees. Myburg et al. (in this volume) 
integrated systems biology, systems genetics, and synthetic 
biology to propose a new paradigm for the production of 
chemical feedstocks from woody biomass and for a multitude 
of other wood products.

(2) Gene Transfer and Genetic Engineering. The slow and 
inefficient transfer, incorporation, and expression of specific 
genes into forest trees continues to be a major barrier to progress. 
Even more demanding is the subsequent requirement for the 
transformed cell to dedifferentiate, divide, and regenerate 
organs or embryos expressing the inserted gene. Only a small 
number of tree genotypes and species have in vitro regeneration 
systems able to support the stress of DNA insertion and express 
the plasticity needed for embryogenesis or organogenesis. 
Nagle et al. (in this volume) have reviewed the challenges and 
opportunities existing for DNA transformation in forest trees. 
Use of development-stimulating genes such as WUSCHEL 
appear highly promising, as do in vivo approaches. Bewg et al. 
(in this volume) summarized the status of gene editing in trees 
using CRISPR-cas9 technology. CRISPR technology is highly 
efficient for making knock-outs and other alterations, with 
few off-target effects in trees. Sterility has been the strategy 
to mitigate gene flow from future plantations that contain 
genetically modified trees. The minireview by Fritsche  et al. 
(in this volume) outline approaches to the containment of 
modified genes, and of exotic and invasive forest tree species, 
by sterility.

(3) Genetic Mapping and Quantitative Trait Analysis. 
One major benefit of genomics has been the resulting 
integration of quantitative and molecular genetics. Now 
that genomic sequencing can, in principle, identify all the 
genes, the genetic basis of complex quantitative traits can be 
potentially identified and characterized more directly. Wood 
properties are under moderate to strong genetic control (Porth 
et al., 2012) but are also influenced by environmental factors 
such as season, rainfall, and variation of the gravity vector 
(Plomion et al., 2001). Du et al. (in this volume) use wood 
formation as a model system for investigation of the genetic 
architecture and regulatory mechanisms of quantitative traits 
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in forest trees. They reviewed recent progress in genome-wide 
association studies (GWAS) of wood properties as a tool for 
functional genomics and the potential for molecular breeding. 
Grattapaglia et al. (in this volume) reviewed the application 
of genomics to tree breeding and describe how genomic 
information may be used to improve selection. Genomic 
selection (GS) may allow predictive markers to accelerate the 
selection of elite genotypes and discovery of the genetic factors 
contributing to quantitative traits.

(4) Growth and Development. The growth habit and 
architecture of forest trees has a major effect on the ecological 
roles and commercial value of forest trees (Zobel and Jett, 1995; 
Holliday et al., 2017). Busov (in this volume) has reviewed the 
regulation of crown architecture, secondary growth, wood 
formation, and adventitious rooting, all complex traits, based on 
a number of molecular mechanisms.

Chromatin modification is thought to be the basis for a 
wide spectrum of changes in gene expression in response to 
developmental or environmental signaling. Only recently have  
the extent and roles of chromatin remodeling in forest trees been 
explored. In this volume, Conde et al. have reviewed this progress 
focusing on the signatures of chromatin regulation during active 
growth and seasonal dormancy.

Molecular switches, sensitive to day length and temperature, 
drive poplar phenology. Short days and low temperatures trigger 
the sequential induction of ethylene and abscisic acid signaling 
pathways, bud maturation and the establishment of dormancy. 
Transcriptional profiling and genetic association studies in 
poplar by Maurya et al. (in this volume) describe a platform for 
studying how the environment affects the molecular switches 
that drive phenology.

A major distinction in forest trees is based on the independent 
origin of gymnosperms (softwoods) and woody angiosperms 
(hardwoods). Tuskan et al. (in this volume) have described how, 
as genome sequence information increases and gene function is 
better understood, much will be learned about the evolution of 
these very different lineages with respect to their adaptation to 
variable environments.

(5) Biotic and Abiotic Stress. The world’s forest tree species 
are under threat from the globalization of pests and pathogens. 
At the same time, tree species are increasingly susceptible to 
these threats due to the increased stress from global climate 
change. Increased efforts are being made to find or create genetic 
resistance, either through breeding or genetic engineering. 
Naidoo et al. (in this volume) have proposed a strategy for the 
investigation of defense mechanisms that could lead to the 
development of superior genotypes with enhanced resistance to 
biotic stress, integrating quantitative and qualitative resistance 
with the additional contributions of microbial endophytes and 
the root-associated microbiomes.

Cold hardiness can affect the natural range of forest trees 
or the establishment of exotic species in new environments 
(Hinchee et  al., 2011). Wisniewski et al. (in this volume) have 
reviewed the current knowledge of cold hardiness, and the efforts 
to improve it through transgenic approaches. Cold hardiness is 

a complex trait involving avoidance, tolerance, seasonal stages, 
and dormancy.

Nitrogen availability, as ammonia or nitrate, and nitrogen use 
efficiency are limiting factors for growth and development of 
forest trees. Nitrogen reserves also affect dormancy and nitrogen 
cycling in their ecosystem. Nitrogen affects both primary and 
secondary metabolism. Canovas et al. (in this volume) summarize 
advances in forest trees for the functional characterization of 
genes affecting molecular regulation of acquisition, assimilation, 
and internal recycling of nitrogen.

One of the major effects of climate change is manifested in the 
water cycles where droughts are expected to be more frequent 
and more extreme. Polle et al. (in this volume) review approaches 
to identify genes that could modify drought tolerance through 
knowledge of the molecular physiology of the responses to 
drought stress.

(6) Cyberinfrastructure. Databases have become essential 
to forest biotechnology, as genomic analysis, transcriptomics, 
metabolomics, and image analysis become accessible tools 
for genetic engineering and systems biology of forest trees. 
Wegrzyn et al. (in this volume) describe the existing individual 
databases, each focus of interest and how they interact to 
provide synergistic cyberinfrastructure for the forest tree 
biotechnology community.

Forest genomics and biotechnology is a highly diverse 
international endeavor, which is advancing rapidly as new 
technology enables novel approaches and insights. It is an 
exciting time, and the reviews in this volume provide an 
excellent update about where things are, and where they 
are likely to go. Enjoy reading this special issue on Forest 
Genomics and Biotechnology!
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