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Regulation of Flowering
Time in Poplar

Cetin Yuceer, " * Chuan-Yu Hsu,"* Amy M. Brunner’ and
Steven H. Slrauss’

ABSTRACT

Trees have provided ard will continue to provide shelter, energy,
tiber, toedd, and numerous ether benefits for society. However, the
lenethy juvenile period is a major obstacle to early and frequent sexual
reproduction for development of pedigreed offspring to accelerate troe
domestication. Although much is known about the factors regulating the
enset of sexual reproduction in the annual model plant Aribidopsis, far
less s known about this transition in trees: Recent advances in poplar
are beginning to provide a iindamental understanding of the signaling
mechanism by which the onsel of sexual reprodoction s determined
in trees. This .Cht\p!L‘r provides an overview of knowledge about the
genetic, physiclogical, and environmental factors that regulate first
time and seasonal reproduction poplar, making reference fo insights
from Ambidopsiz, Furthermore, we discuss the potential for practical
applications of knowledge in trees gained from fundamental flowering
research,

Keywards: flowering, reproduction; development, juvenility, maturity,
poplar, Fopriins
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11.1 Introduction

Compared to food crops, forest tree improvement is in its infancy,
Innate leatures of trees provide major barriers to breeclinh pProgriss,
most significant of which is the lengthy juvenile phase of 5 to 20 vears
betore they are developmentally capable of flowering. The long delay in
Hlowering and typically high genetic load of trees makes it infeasible to use
advanced methods such as inbreeding and introgression of rare or exotic
alleles. The net result is a very slow rate of domestication for all breeding
goals. Transgenic approaches can potentially advance tree domestication,
bul concerns over the dispersal of transgenic pollen or seed, in addition
to a number of other social and technical factors, have prevented muost
commercial uses of transgenic forest trees in the world (Brunner et al.
2007} Thus, understanding the factors that regulate tree flowering and
discovering ways to manipulate it could enhance tree improvement by
speedling breeding and research to develop effective means for genetic
conlainment. Moreover, because flowering time is an adaptive trait that is
affected by global warming (Fitter and Fitter 2002), discovery of the genes
important for control of tree Aowering might also aid in the development
af strategies for maintaining healthy forest tree populations in the world
with rapidly changing climates.

Poplar (Fepulus spp.) is economically and ecologically important,
amd s a model system for deciphering the molecular and physiological
processes that regulate flowering lime in trees. The main advantages
of poplar compared to other trees include the rich variety of genomic
resoutces available lor it {e.g., whole-genome sequence; Tuskan et al. 2006),
ils amenability to Avrobacterim-medicled transformation {Han et al, 2000;
Scngy el al, 2006; Cseke et al. 2007), and its well-studied developmental
processes, Poplar and the annual herbaceous plant Aralidopsss thalinma are
both angiosperms and eudicots, facilitating comparative genomics between
these fwo taxa (Soltis et al, 1999 Wikstrom et al. 2001). Comparison of
Hlowering genes and gene function and pathways between poplar and
Arabidopsis will advance our understanding of how changes in gene number,
expression, and interactions have resulted in drastically dilferent florval
morphologies and flowering habits,

This chapter will provide an overview of current knowledge about the
genelic and physiological factors that control flowering time in poplar. We
also discuss the potential for practical applications of knowledge gained
from molecular flowering research.

11.2 Development and Architecture

Poplar has a life span of more than 100 years and a juvenile phase of
approximately five years to more than a decade prior to the onset of
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Howering (Braatne et al. 1996), indicating slow maturation. Juvenile treeg
form vegetative buds; leaves; and internodes. A terminal bud is formed a|
the end of each shoot every season and is enclosed by several lavers of bud
scales that are formed by the enlargement of stipules to protect the foliage
primordia of the following season’s growth (Goffinet and Larson 1981),
fuvenile trees exhibit rapid growth rates with long internodes, continuous
shoot growth throughout the grow: ng season and terminal bud formation
at the end of the growing season when the critical daylength for bud set
cecurs. Following the first annual production of reproductivie buds, seasonal
production of both vegetative and reproductive buds occurs during the
reproductive developmental phase. Thus, poplar has developed a shoot
architecture that accommodates both vegetative and reproductive growth
throushout its life cvele.

The developmental state of leaves, the positions of axillary buds, and
scasonal timing of axillary meristem initiation on a shoot are important
Fectors in Hower initiation. Thus, a model for the development and
architecture of axillary bud meristemns and their temporal and spatial
formation in shoots of mature I delfeides was developed (Yuceer et al, 2003),
Shoots with flower buds in mature crees tend to have shorl internodes and
carly cessation of primary vegetative growth. Conseguently, shoots begin
forming a terminal bud approximately two months following spring bud
flush. It is currently unknown why, or how, shoots that produce flower
buds cease growth prematurely.

Mature shoots possess a defined developmental pattern that includes
specific locations for vegetative and reproductive buds and distinet leaf
tvpes {Critchtield 1960; Boes and Strauss 1994, Yuceer et al. 2(03). Shoots on
adult trees produce buds in a sequential manner, each with an associated
leal type. Early vegetative buds (Vegetative Zone 1) are produced in axils
of early preformed leaves, reproductive buds (Floral Zone) are produced in
axils of late preformed leaves, and |zt vegetative buds (Vegetative Zone 1)
are produced inaxils of neoformed leaves. During the first growing season
{Wear 1), the terminal bud forms and contains the early preformed leaves
and the late preformed leaf primordia. Early preformed leaves are initiated
early in the development of the terminal bud during Year | and have a long
developmental period which is interrupted by a cold period (vernalization)
prior to expansion in the second growing season {Year 2). The preformed
buds that develop in the axils of the early preformed leaves (Vegetative
Zone 1) never develop into reproductive buds and form vegetative shoots
with true leaf primordia. Late preformed leaf primordia develop during
the advanced stage of terminal bud development and stay in a primordial
stage during vernalization. The buds that develop in axils of these leaves
are reproductive.
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Spring flowering phenology varies among species, genotypes, :_|rt.d
populations, but the sequence of events s t.hf;" same in all cases. A vpical
phenology for Papudus deltoidies in Mississippi, UsA is dexr_ihvd I:::e]o'fv
The terminal bud opens in late March of Year 2 following the formation in
Year 1. Reproductive buds in the Floral Zone, numbering from two to 100on
shoots, subsequently become visible in late-leaf axils, f:.x:l-l’!"l]]"f..-‘dlm'l of the
spring bud meristems in the Floral Zone indicates mnr}-hnlngmal changes
that have led to inflorescence shoot formation, floral menstem development,
and organ formation. On the developing inflorescence (catking beginning
late spring (May), bracts and then axillary tlnr;i meristems Lj{_""-"i!lil:"l.]."l
acropetally. By the winter of Year 2, the floral meristems form a cup:llkf*._
reduced perianth with stigmas or tetrasporangiate eml:h»..%rsa in the amlﬁ. ot
fullv-elongated bracts. As an adaptation towind pollination, reprod uctive
bud flush occurs before vegetative bud flush in March of Year 3; catkins
rapidly elongate and floral anthesis occurs. Female trees continue ta form
seeds until May of Year 3, . _

After all preformed leaves have expanded in spring of Year 2 some
shoots may produce neoformed leaves that initiate and expand entirely
within the current growing season. Thus, the neoformed .le:s'-.z_us have not
undergone vernalization. These leaves comprise Vegetative Zone il n_nd
bear vegetative buds in their axils. Following the formation ot reproductive
buds, as many as 40 vegetative buds form in Vegetative Zone 1L

Allhm:gh it 15 unknown when exactly the floral inductHon 0-:::_11 rs,
the Howvri;ig process may begin as signal perception in early s,-'_m'rmlnfed
preformed leaves of the first growing season, prior to ﬂmf-er buad formation
during the second growing season. Equally important 1s the question uf
whether the floral siyrnal is translocated Lo the shoot apical meristem (SAM)
where bud fate is determined or to developing axillary buds. It is possible
that the floral signal transhocates to the developing buds in the ]a?e-l-:afaxi].f.
through direct vascular connections, given that a specific repeating pattern
of primary vascular tissues exists bebween leaves and the npdef where l:ll..][‘]:'-;
form (Larson and Pizzolato 1977; Pizzolato and Larson 1977, Dickson 1986
The primary vascular connections are formed in the primordial stem tissues
of the overwintering terminal bud as a continuation of acropetal elongation
of the shoot {Larson 19750,

11.3 Flowering-Time Genes

11.3.1 Arabidopsis thaliana

Arabidopsts is the best studied annual plant model, particularly for its
repruductive biology. Arabidopsis completes its lifec yele in two months, with
a short juvenile period followed by the production of flowers (Somerville
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Martinez-Garcia et al. 2002; Mouradov et al. 2002). Light signal is perceived
by leaves and transported as a systemic sipnal or “florigen” to the shoot
apex where floral development is induced (Knott 1934 Seevaart 1970;
B-L-""If'l"lit?r and [jFFEHEU?\' ZI:JL]SJ orbesier and C{'&Llp]ﬂl'll.'i 2“'“5':' A r':!rIJfL!II.lrl-':-Cf.‘; s
a facultative long-day plant, Phatoreceptors such as phytochromes and
cryptochromes are involved in perception of light and mediate light input
ta the circadian clock (Goto et al, 1991; Johnson et al. 1994; Guo et al, 14ssE:
Somers ct al. 1998; Devlin and Kay 2000; Lin 2000). The far-red light sensor
PHYA promotes flowering, but the red-light sensor PHYE inhibits Howering
(Reed et al. 1993). PHYB is involved in degradation of CONSTANS (o
protein early in the day (Valverde et al. 20041 C rvptochromes, CRY| and
CRY2, are blue light photoreceptors and encode flavoproteins (Lin et al,
1948; Cashmore ot al. 1999), CRY2 is the main phiotoreceptor mediating
day-length and flowering responses, perhaps by inhibiting PHY B signaling
{Guo et al. 19958; Mockler et al, 1999; Mas et al. 2000).

The response of photoreceptors is integrated with clock entrainment
factors such as ZTL, FKF1, and ELF3 (Hicks et al. 1996; Zagotta et al,
1996; Somers et al. 20001 This results in the coordinated expression of the
circadian-regulated genes such as TOCI, CCAT, LHY, and ELF, which are
the central components of the clock (Schaffer et al. 1998; Somers et al. 1995;
Wang and Tobin 1998; Strayer et al. 2000}, The clock then exerts its control
of photoperiodic response by setting the rhythm of the flowering time
genes GIGANTEA (G} and CO (Putterill etal, 1995; Fowler et al, 1999; Park
et al. 1999; Suarez-Lopez et al. 2001; Yanovsky and Kay 2002; Mizoguchi
et al. 2005). Regulation of CO expression and activity is important tor
photoperiodic flowering. Arabidopsis co mutants are late flovwering under
long davs, but Aower at a similar time to wild-type under shorl days.
Thus, CCF promotes flowering under long days, High CO miRNA lovels
coincide with light in long davs, but are largely confined to darkness in
short days (Suarez-Lopez ¢f al. 2001 Raden et al. 2002; Yanovsky and
Kay 2002). Consequently, CCY protein may not accumulate in darkness.
Direct light activation of the encoded protein of CO also influences CO
abundance or activity (Suarez-Lopez et al, 2001; Yanovsky and Kay 2002).
CO protein is degraded in darkness, but light stabilizes it in the evening
through cryptochromes and PHYA (Valverde et al. 2004). The promaotion of
Mowering by CC requires FLOWERING LOCUS T {ET and SLIPPRESSOR
OF OVEREXPRESSION OF CONSTANS {(SOCT), previously described as
AGL2D) (Putteriil et al. 1995; Borner et al. 2000; Lee ot al, 2000 Onouchr et
al. 2000: Samach et al. 2000; Wigge el al. 2005; Yoo ¢t al. 2005)

The T gene is activated by CO only under long days at the end of the
day and promotes the transiion from vegetative to reproductive phase
(Kardailsky et al. 1999; Kobayashi et al. 1999; Samach et al. 2000; Suarez-
Lopez el al. 2001}, FT encodes a protein with similarity to mammalian
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phosphatidylethanolamine binding proteins, indicating that FT plays a
role in signaling {Kardailsky et al. 1999; Kobayashi et al. 1999), CO protein
activates FT in the leaf phloem companion cells {Takada and Coto 2003; An
et al. 2004; Ayvre and Turgeon 2004), The I'T protein then moves out of the
phloem to the SAM where floral development is induced (Corbesier et al.
2007: Jaeger and Wigge 2007; Mathieu et al. 2007). In the nucleus of the SAM,
FT forms a complex with FD (BZ21F transcription factor), which upregulates
the MADS-box transcription factor APT to induce floral development { Abe
etal. 2005; Wigge el al. 2005),

TWIN SISTER of FT (T5F) is the closest homaolog of FT in Arabidopsis
{E2% amino acid similarity), and perhaps being products of a duplication
event; T5F acts redundantly with FT in the same molecular pathway
{Yamaguchs et al. 2005) and both are involved in flower induction, show
similar patterns of mRNA diurnal oscillation, and respond to long-day
photoperiods (Kardailsky et al. 199%; Kobavashi et al. 199%; Suarez-Lopex
et al, 2001 Yanovsky and Kav 2002 Yamaguchi et al. 20{5). Howewver, T5F
and FU do not appear t affect each other’s transcription.

Although TERMINAL FLOWERT (TFL1) is closely related to FT,
it determines the potential for continuous growth of the shool apex,
prolonging the vegetative stage {Alvarer et al. 1992; Bradley et al. 1997).
Loss-of-function mutation in TFLT promotes earlier flowering, whereas
conslitutive overexpression (Mo, TFLT) delays flowering under long days
with a prodonged vegetative stage (Ohshima ot al, T997; Rateliffe etal. 1998),
O upregulates TELT in the inflorescence meristem in the center of the shoot
apex {Simon et al. 1996), However, the TFL protein alse moves into other
parts of the meristem (Conti and Bradley 2007). Given that CO activates
both FT and TFLI, and that both genes are highly similar, the function of
TELT may be tocompete with I'T inthe shoot apex to prevent Lhe conversion
af the apex into a source of floral neristems (Ahn ot al. 20060, This might
ocour via competitive binding of FT and TFLT to FEX,

TFLT inhibits the activity of meristem identity menes LEY or AP at the
center of the shoot apex by delaying their upregulation and preventing the
meristem from responding to LEY or APT (Shannon and Meeks-Wagner
1991 Alvarcr ot al. 1992 Weigel el al, 1992; Bradley et al. 1997; Ralclifle et
al. 1998, 19949 In contrast, LFY and APT prevent TELT transcription in floral
meristems on theapex periphery. TFL2 represses CO-dependent activation
of FT to restrict flowering in response to transient changes in CO activity
it the long-day signal has not yet been perceived, The 5CCT gene encodes
a MADS-box protein and integrates the photoperiodic, autonomeous,
vernalization, and gibberellin patbways (Borner et al, 2000; Lee ot al. 2000;
Samach el al, 2000,
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11.3.1.2 Autonomous De‘:“f‘!upn'.!t.'m‘.n!} Patirieay

The autonomous pathway mediates flowering by monitoring va
developmental stages of the plant. The homeodamain protein
LUMINIDEPENDENS (1.0)) promaotes flowering by reducing _tlw _]E"'"EEE
of the floral repressor and MADS-box transcription factor 1 OWERING
LOCUS C(FLCY (Lee et al, 1994; Michaels and Amasina 1999). Other genes
in the developmental pathway that primarily target FLC and that poszliwl}-
regulate flowering include FVE, FCA, FY, FBA, TLOWLERING I.[??.UE &)
(ELLY), and FLOWERING LATE KH MOTIF (FLK}. FCA, FPA, and FLK are
all RMA binding proteins {Macknight et al. 1997; Schomburg et al, 2001),
whereas FY is a polvadenylation factor (Simpson et al. 2003 Lim et al. 2004
Mockler et al, 2004; Henderson et al. 2005; Metzger et al. 2005). FCA and
FY regulate RNA processing of FLC (Simpson et al. 2003). FLD and FVE
might play a role in histone deacetylation, because LI is similar ln_thu
!}-‘Him‘-ﬁp&{:fic histone demethyvlase 1LSD1 (He et al. 2003; Ausin et al. 2004;
Shi et al, 2004).

11.3.1.3 Vernalizalion Pathiony

The vernalization pathway mediates low temperature signals that alter
gene expression and induce flowering by reducing the IC"f’I;,"l.‘-':.(]f the floral
repressor FLC (Michaels and Amasino 1999; Sheldon et al. 1999; Sheldon
et al. 2000, 2002; Bastow et al, 2004; Searle et al. 2006}, FLT appears toacl
at the shoot apex and in leaves to delay flowering, and is downregulated
by WIN3, VRN, and VRN2 (Gendall et al. 2001; Levy et al. 2002; Sung
and Amasino 20043, Conversely, FRIGIDA (FRI) upregulales FLC, which
in turn delavs flowering by reducing the expression of FT' (Michaels and
Armiasinio 2001), FLC protein directly binds to the regulatory regions of FT
and SOCT prior to vernalization (Searle etal. 2006). This interaction appears
to inhibit the formation of the svstemic signal that is required to-activate
SOCT, which initiates the switch from vegetative to foral development,
These observations indicate that flowering signals from vernalization and
photoperiod pathways are integrated through the regulation of I'T and
50CH.

11.3.1.4 Gibberellin Pathway

Arabidopsis eventually flowers under non-inductive short davs, despite

an absence of FT signaling. Genetic studies indicate that gibberellins (GA)
control flowering under short days, therefore compensating for the absence
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of £ 1 signaling. Forexample, the GAT gene is involved in GA biosynthesis, =
and a mutation in this gene (gal-3) results in plants that are severely dwarfed, ;
unable to flower under short days, and strongly enhances the co2 mutation < = =
under long days because the co2 gal-3 double mutant never flowers {Wilson iz £ d O, . ; % g o =
ct al. 1992; Reeves and Coupland 2001). gal-3 mutants carry a deletion of g = =& g g 2 % £ = ZZ E|E
the gene encoding the enzvime ent-copalyl diphosphate synthase (formerly = g TG R = = :-' ) = S
eirt-kaurene svithetase A) that catalyzes the first step in GA biosynthesis E =T b= = = ) ¥ o
(Sun and Kamiva 1994). Overexpression of LFY and 50C1 restores flowering —E ; ':::‘- E ‘é s L n_i £ 9 e
of the gal-3 mutants under short davs (Blazquez el al. 1998; Moon et al, = - 2% = & = .‘3_ T 3 g AR
2003). This suggests thal GAs promote flowering in Arabidopsis through a = £ 22 BF U U= X S % v £ Z
pathway that controls LFY and SOCT transeription (Blazquez et al. 1998), SlElg £ 2¢ t& sz E B 23 Bz d
The LI'Y promoter contains cis-elements (e.g., the 8-base-pair CAACTGTC ;5 § 5 -:—j : g = :' ,'_,f Z ’; Ej 5] -_7, = % *f *d—-:r'
motif} invelved in GA, response (Balazquez and Weigel 2000}, GAMYB-like FIBZ £4& BS g 8 4 F d¢ c£d4d
genes (e.g., AIMYB33) bind to the LI'Y promoter. ElEl8 ¥E% % T& 23 % & B o 2E 3
GIBBERELLIC ACILDY INSENSITIVE (GAD, REPRESSOR OF GAI-3 £ |=

(RGA), RGA-LIKE 1 (RGL1), RCL2, and SPINDLY (5PY) negatively il e
regulate the GA signaling pathway and play a role in control of flowering 3. |2 4 ot % oE E R Ee e B
{Jacobsen and (Hszewski 1993; Dill and Sun 2000; Cheng et al. 2004; Tyler i El= % E é o 2 & e s E x2S = £ §" 7
et al. 2004). RGLI is predicted to function in repressing GA responses ; zlf 2 g& E3 g H B 22 gdE
in the inflorescence, given that in the absence of the DELLA domain of 5
RGLIL, sepals, petals, and stamens are underdeveloped and the flowers = B
are male sterile (Wen and Chang 2002). The DELLA domain is a conserved = =
sequence near the N-termini of RGA, GAL and RGL1, and plays a role in = & o
GA response (Wen and Chang 200200 If the DELLA domain is removed, s = ,\Ea
GAL s insensitive to GA (Peng et al, 1997). This causes repression of shoot 2 % = o
erowth and flowering in the presence of GA. The spy mutant shows an early E: Ble & . o e = = =z ol
flowering phenotvpe (lacobsen and Olszewski 1993), possibly because of E |zl & S E: P 5 & ? = 3
the increased activity in the GAsighaling pathwav, The 5PV gene is highly ol s i 'Ec = ;j’,“ s r,%u
similar to Ser/ Thr O-linked N-acetvlglucosamine transferases in rats and T S e = E: E - = < o
humans ((Mszewski et al. 2002). This suggests that 5PY may plav a rele in z iy =
post-translational modification of unknewn downstream proteins, s = =

= = =
11.3.2 Poplar : : E
The molecular basis of “first-time” and “seasonal” reproduction is poorly ‘E = <= = ] :~:
understood in poplar. Using the protein sequences of Arabidopsis llowering- - = 2 i 5 5 =
time srenes, a search in the poplar genome database was conducted (it ’E £ R = E E i
genonie pi-paforg/PopteT _1Poptel _Llwemeitnil). Each of these Arabidopsis & 5 = =) s - 3 E
genes was found to have at leas: one corresponding poplar homolog e Z = E/ é = sE £
{Table 11-1) and in some cases many poplar homologs. For example, some F L2 = T = E Zk =
transcription factor homologs such as FWA, GAl/RCAL, C0, and MADS- ol <5 18 ! '.‘f_,' § - ﬁ E G
box proteins consist of large familics of genes in poplar. To help reselve the o E f E £ = = =k " E
phyvlogenetic relationships between well characterized flowering control R |ZlE & o e i - E = w
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genes and their poplar homologs, we conducted phylogenetic analyses.
Basced on the Neighbor-Joining method (Saitou and Nei 1987), three genes
closely cluster with FWA in Arabidopsis, but five genes are present in the same
cade with FWA in poplar (Fig. 11-2), RGA1 and GAI belong torthe GRAS
family of transcription factors and cluster with three other RGL proteins in
Arabidopsis, whereas there are four DELLA domain poplar proteins in this
cluster (Fig. 11-3). Interestingly, a group of six puplar proteins form a sister
group to the DELLA protein group, but lack a DELLA domain. Atotal of 16
CO-like (COL) proteins (including COY are present in Arabudopsis, and COL1
and COL2 closely cluster with CO (Fig. 11-3). Two zinc finger-containing
proteing in poplar show high similari ty to the Arabrdopsis CO protein in the
same clade (Yuceer et al, 2002; Fig. 11-4). An analysis of the evolublionary
relationship among the MADS-box proteins in poplar (Leseberg cta | 20006
showed that many poplar gene families have expanded due in parl to
gene duplications vccurring after the divergence of Arabidopsis and poplar
(Tuskan et al. 2006). The ¢losest poplar homologs of A rabidupsis FLC, SV,
SOCT, and AP proteins are individually grouped in Fig, [1-5.

11.3.2.1 LEY May Play a Role in Poplar Flowering Time

Chverexpression of the Arabudopsis LIY gene regulated by the CaMV 355
promaoter (Pro, LFY) caused early flowering in a male poplar {2 breninla
x £ fremitloides) (Weigel and Nilsson 1995). However, o cLFY did not
consistently produce early flowering in other poplar genotypes {Rottmann
el al. 2000), nor did it produce normal inflovescences and viable gametes.
Four of seven lines Aowered within six months, but flowering was observed
primarily in males (I premula x P Brenndondes), Only two of 19 lines of a
female poplar clone (P fremda x £ alba) [ranstormed with this construct
flowered, doing so after bwao years of growth, Single flowers in these lines
also formed anthers, suggesting that LFY may promote male flowering in
poplar. A LEY-like gene, PTLE, is the only copy of a gene with substantive
resemblance to LEY in the poplar genome (Rottmann et al. 2000). A construct
with the native poplar LFY homelog under the 335 promoter (Pro, sPTLE
did not cause early flowering in the female clone, and only one of 16
transformed males produced unitary flowers without evidence of viable
pollen production (Rottmann et al. 2000).

11.3.2.2 £T7 and FT2 Control Flowering Time

FLOWERING LOCUS TT and T2 (FT1 and FT2) are major plavers
in “first-time” and “seasonal” reproduction in poplar, and their
transcription is controlled by developmental and environmental factors
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{Bohlenius et al. 2006; Hsu et al. 2006) FT1 and FT2 are i the same ene
family with 1% amine acid sequence similaritv, FT2 mENA was detected
at background levels in roots and the shoot apex (Hsu et al. 2006), However,
its expression was most abundant in leal 11 (from the base of the shoot)
and in the bud in its axil that was destined to be reproductive, suggesting
that FT2 expression is upregulated in leaves and buds. The abundance
of FT2 transcripts in leaf 11 increased from the juvenile to reproductive
developmental phases, suggesting that FT2 might play a role in juvenile to
mature transiion. When Pro o Tand P oFT2 constructs were separately
inserted into juvenile poplar, trees produced flowers within several months,
The Pro, oFTT trees were not, however, induced to enter dormancy under
short davs or cold temperatures such as in wild type trees (Bohlenius et al.
20k} This suggests that Aewering and dormancy induction share common
regulatory elements,

The abundance of FT2 transcript in leal 11 was low from February to
April, but was high in mid-May (Hsu et al. 2006). During this time, leaves
developed from a primordial preformed leaf to a fully expanded leaf,
Beginning in mid-Maw, FT2 transcript was abundant inbud 11 shich formed
an inflorescent shoot and floral meristems on its Aanks. Polential factors
involved in the increase of FT2 brenseript in leaves include temperature,
development, and photoperiod. Poplar trees were treated under two
termperature regimes (23°C and 33°C) to determine if this affecled FT2
transcript abundance. Mo change, bowever, was observed in the expression
pattern of ' T2 under either temperalure regime, suggesting that temperature
is not a factor in the expression pattern of FT72 (Hso et al. 2006). When poplar
trees were grown under long (14 hours) and short (8 hours) davs for T4 days,
FT2 transcripts were abundant under long davs throughout the experiment,
whereas they were either at background levels (first 7 davs) or undetectable
after 14 days under short days (Hsu et al. 2006). These results suggest that
long days promote the abundance of FT2 transcript. The poplar genome
containg at least two PO orthologs and all fransgenic lines overexpressing
PR Alowered when growin in a long day-length greenhouse, but flowering
was not observed when transgenics were grown under short dav-lengths
(G. Coleman, pers. commp: The FI2 and PHT results suggest that long
photopeniods promote floral bud formation in poplar

Photoperiod controls many aspects of poplar growth and development
including growth cessation and winter dormancy (Tauley and Perry 1954;
Howeetal 1995, 1996; Olsen cial. 1997). Reports indicate that FIE‘IL"IlL']-F'I-E'E'iLHj
is a physiological stimulus that trigeers flower bud initiation in woody
perennial plants (Junttila 1950 Rivera and Borchert 2000 In the related
species, Saltx pentandra, flower bud formation was maximally promoted
by photoperiods of 18 to 22 hours (Junttila 1980}, However, detailed
melecular studies have vet b be conduocted to complete understanding of
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how photoperiod controls flowering in poplar. A major barrier has been
the lack of naturally occurring early-flowering poplar genotypes that can
be easily moved and studied in various controlled enviromments, but as
the £T and PHDT resulis show, use of carly-flowering transgenics is likely
to be useful in circumventing this problem.

Study of PopCENT, a poplar homolog of snapdragon CENTRORADIALIS
(CENJ and TFL1 from Arabidopsis revealed a conserved role in repressing
flowering (Mehamed et al. 2010, Downregulation of PopCENT via I?\Nlﬁ.i
did not induce the extreme early flowering seen in poplar transgenics
overexpressing 11, FT2, or PIFOT, but a multi-year field e_'.h_uig.e rrl_“-.fralvd
that suppression of PopCENT did promote an earlier onset o flowering and
a markedly increased number of lateral inflorescences.

These few examples show the power of transgenic manipulation in
poplar and of comparative genomics, especially when w Imlﬂ_ ZEnome
sequences are available. Moreover, combining transgenesis, microarray
expression analysis, protein-protein interaction studies, and other -omics
approaches should reveal the transcription-based regulatory networks
controlling Alowering in poplar and thus, how these genes and pn_thn-'a}-‘s
are modified to vield the dramatically different flowering habits of poplar
and Arabidopsis.

11.4 Practical Applications

The rationale, projected benefits, and mechanisms for the manipulation of
flowering via genetic engineering have been widely discussed, most recently
in an extensive review by Brunner et al. (2007), They are: 1) Improved
vegetative growth by removal or reduction of inflorescences, fle rral_organsa,
and fruils as sinks for carbon and nutrients. The evidence that this could
be substantial in some species and circumstances was discussed in depth
by Strauss et al. (1995); 2) Containment of genes or exolic organisms by
H;Jppmssiﬂn of floral onset, floral organ or fruit function, or by transgene
removal during gametogenesis, A very wide variety of options have been
shown to work in Aralndepsis, tobaceo, or other model an nual plants, The
only evidence that these kinds of genes can be effective in substantially
reducing fertility in a field environment was presented by Brunner et
al, (2007) with reference to poplars containing a gene for male sterility
[J’mi_l_,,;fbm-urm']; Finally, 3) Acceleration of f|£_h1.\-'1:1'i|.‘1g o 5px:mil breeding or
research has been a long sought goal in tree breeding, for which hormone
treatmients have been highly effective in conifers and some other woody
species, butnot in poplars (Meilan 1997). However, as Llis-:ussu_d above, the
transgenic approaches attempted to date have given unsatistying resilts
with respect to consistent production of viable gametes and seeds, The more
normal appearance of catkins with FT'T induction of flowering in poplar
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(Bohlenius et al, 2006), and the grat-transmissibility of the FT signal protein,
have inspired hope that transgenic rootstocks might be usetul for ind ueing
rapid fowering of grafted scions. The Fl-assocated inductive signal can be
transmitted from leaves to shoot apical meristems, as demoenstrated using
intra- and inter-specific graftting experiments (Imaizumi and Kay 2006;
Zeevaart 2006}, Such a tactic could avoid the regulatory or environmental
concerns of transgene deployment in production forests. However, graft
induction of FT-associated flowering has yvet to be demonstrated in woody
species, and at least in Germany—where labeling of transgenic associated
products is required by the EU whether transgenes persist or not—such a
tactic would not be likely to obviate regulatory oversight of derived non-
trangenic seeds and torests (M, Fladung, pers, comm.).

The process-based regulatory oversight of all transgenic products
in the USA and most other countries, where transgenes are assumed to
be dangerous until proven otherwise on a case by case basis, makes it
extremely difficull to do the required field research evaluations to assess
the level of fertility reduction, postponement, or prececious induction
under conditions relevant to commercial forestry programs. This is because
genetic dispersal of even minute amounts of as little as fertility-reducing
genes is nol permitted, vetitis very difficalt to fully guarantee this during
the course of multiple vear research in large, flowering trees. Until there is
substantial regulatory reform that takes into account the risks of specific
classes of genes, as has been proposed earlier many times and in many
wavs (e.g,, Hancock 2003; Strauss 2003a, b; Bradford 2005)—and is now
under active consideration in the USA (LISEA 2007 j—research to develop
practical applications for trees that have been geneticallv engineered for
modified fowering characteristics will proceed very slowly and at great
expense, iF it can proceed at all,
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