

CRISPR/Cas9 Efficiency and Biological Impacts in Transgenic Poplars and Eucalypts Estefania Elorriaga and Steven H. Strauss Oregon State University

Outline

- Background
 - CRISPR, goals, target genes
- Mutagenesis results
 - Poplars and eucalypts
- RNAi vs. CRISPR
 - Vegetative function of eucalypt LFY?

What are CRISPR/Cas systems?

- CRISPR stands for clustered, regularly interspaced, short palindromic repeats
- The CRISPR/Cas system is an adaptive defense system in prokaryotes to fight against alien nucleic acids

Value of CRISPR-Cas nucleases

- Engineered CRISPR systems <u>nice</u>
 - Affordable
 - Easy to implement
 - Efficient
 - Insensitive to methylation
- Used successfully in many plant species with high mutation rates, frequent biallelic mutation
 - Transient assays, 1 to 38 %
 - Stable assays, 4 to 100 %

CRISPR-Cas9 targeting of floral genes might provide robust containment

- **Goal:** To develop robust <u>male and female</u> containment technologies for <u>vegetatively</u> <u>propagated</u> forest trees
- Why: Regulatory, market, and public acceptance with exotic and native trees can be costly or impossible even for <u>field research</u>
- Advantage of gene editing: Expected to be more <u>predictable and stable</u> than alternative genetic containment methods that depend on gene expression

Target genes for bisexual sterility

- *LEAFY* floral meristem prior to organ differentiation
- AGAMOUS Male and female organ development and floral determinacy

Strong *Ify* mutants appear to have no flowers

Parcy et al. 2002; Moyroud et al. 2010

Flowers in strong *ag* mutants are missing both stamens and carpels

ag mutants

LEAFY and AGAMOUS homologs in poplar studied in prior work

Plant Molecular Biology 44: 619-634, 2000. © 2000 Kluwer Academic Publishers. Printed in the Netherlands.

619

Structure and expression of duplicate AGAMOUS orthologues in poplar

Amy M. Brunner, William H. Rottmann¹, Lorraine A. Sheppard², Konstantin Krutovskii, Stephen P. DiFazio, Stefano Leonardi³ and Steven H. Strauss^{*}

Department of Forest Science, Oregon State University, Corvallis, OR 97331, USA (*author for correspondence; e-mail: strauss@jfsl.orst.edu); present addresses: 1 Westvaco Forest Science and Technology, PO. Box 1950, Summerville, SC 29484, USA; 21nstitute of Forest Genetics, USDA Forest Service c/o Department of Environmental Horticulture, One Shields Ave., University of California, Davis, CA, 95616, USA; 3Department of Environmental Science, University of Parma, Parco Area delle Science 33a, 43100 Parma, Italy

Both with veg expression, two active *AG* paralogs

Poplar: Dioecy, field trials, FT acceleration

Female clone 6K10 Populus alba

Female clone 717

Male clone 353 P. tremula x P. alba P. tremula x P. tremuloides

FΤ

Strong poplar AG-RNAi events in the field with similar mutant flowers

Strong poplar *LFY-RNAi* events in the field with similar mutant flowers

Eucalypt *LFY* is a single gene, expressed in leaf primordia as well as floral organs

RESEARCH ARTICLE

EgLFY, the *Eucalyptus grandis* homolog of the *Arabidopsis* gene *LEAFY* is expressed in reproductive and vegetative tissues

Marcelo Carnier Dornelas^{1*}, Weber A. Neves do Amaral² and Adriana Pinheiro Martinelli Podriguez¹

¹Universidade de São Paulo, Centro de Energia Nuclear na Agricultura. Lab Piracicaba, SP, Brasil; ²Universidade de São Paulo, Depto. De Ciências Fle Brasil; *Corresponding author: mcdornel@cena.usp.br Received: 25/05/2004, Accepted: 02/07/2004

Eucalypt: *FT*- and *E. occidentalis* early-flowering, collaborator field trials

Plant Biotechnology

doi: 10.1111/nbi 12431

Plant Biotechnology Journal (2015), pp. 1–12

Flowering *E.* occidentalis

FT overexpression induces precocious flowering and normal reproductive development in *Eucalyptus*

Amy L. Klocko¹, Cathleen Ma¹, Sarah Robertson¹, Elahe Esfandiari¹, Ove Nilsson² and Steven H. Strauss^{1,*}

partment Forest Ecosystems & Society, Oregon State University, Corvallis, OR, USA

artment of Forest Genetics and Plant Physiology, Umea Plant Science Centre, Swedish University of Agricultural Sciences, Umea, Sweden

Summary

ed 29 May 2015; pted 10 June 2015. rrespondence (Tel (541) 760 7357; fax) 737 1393; email steve.strauss@ constate.edu)

ed 8 April 2015

words: Eucalypts, breeding, isgenic, forest biotechnology, *vering Locus T*, genetic ineering. *Eucalyptus* trees are among the most important species for industrial forestry worldwide. However, as with most forest trees, flowering does not begin for one to several years after planting which can limit the rate of conventional and molecular breeding. To speed flowering, we transformed a *Eucalyptus grandis × urophylla* hybrid (SP7) with a variety of constructs that enable overexpression of *FLOWERING LOCUS T* (*FT*). We found that *FT* expression led to very early flowering, with events showing floral buds within 1–5 months of transplanting to the glasshouse. The most rapid flowering was observed when the cauliflower mosaic virus 35S promoter was used to drive the *Arabidopsis thaliana FT* gene (*AtFT*). Early flowering was also observed with *AtFT* overexpression from a 4095 ubiquitin promoter and under heat induction conditions with *Populus trichocarpa FT1* (*PtFT1*) under control of a heat-shock promoter. Early flowering trees grew robustly, but exhibited a highly branched phenotype compared to the strong apical dominance of nonflowering transgenic and control trees. *AtFT*-induced flowers were morphologically normal and produced viable pollen grains and viable self- and cross-

pollinated seeds. Many self-seed induced flowering in *Eucalyptu* studies as the transgene can be form.

Outline

- Background
 - CRISPR, goals, target genes
- Mutagenesis results
 - Poplars and eucalypts
- RNAi vs. CRISPR
 - Vegetative function of eucalypt LFY?

- Stable transformation, no removal of CRISPR locus at this time
- Mutation rates on a per transgenic event basis

Experimental constructs – single and double targets per gene

Nuclease constructs

Control construct

Targeting two near-identical sites in the two paralogous AG genes in poplar

>PtAG1

...GGATCAGCTAGCTAGACTGCAGCT**ATG**GAATATCAAAATGAATCCCTTGAGAGCTCCCCCCTGAGGAAGC TAGGAA**GGGGAAAGGTGGAGATCAAG**CGGATCGAGAACACCACCAATC**GCCAAGTCACTTTCTGCAAA** AGGCGCAGTGGTTTGCTCAAGAAAGCCTACGAATTATCTGTTCTTTGCGATGCTGAGCTTGCACTCATCG...

Target site for AGsg2Target site for AGsg1

>PtAG2 ...GATCAGCTAGGCAGCAGCAGCTATGCCATACCAAAATGAATCCCAAGAGAGCTCCCCCCTGAGGAAGC TGGGRA<u>GGGGAAAGGTGGAGATCAAG</u>CGGATCGAGAACACCACAAATC<u>GYCAAGTCACTTTCTGCAAA</u> AGGCGGAATGGTTTGCTCAAGAAAGCCTATGAATTATCTGTTCTTTGCGATGCTGAGGTTGCACTCATCG...

Targeting two sites in the singlecopy *LFY* gene of poplar

Target site for LFYsg2 (in promoter region)

>PtLFY

Target site for LFYsg1 (in exon 1)

Two conserved target sites in *euc LFY*

Target site for EgLFYsg1

Target site for EgLFYsg2

PCR amplicons have more than two SNPs to identify separate alleles

- *PtLFY*:
 - C...T...T...G
 - T...C...A
- PtAG1:
 - A...G
 - G...A
- PtAG2:
 - A...A...T...G...C...C...TG...C...C...A...T...T...C
- EgLFY:
 C...T...T...G
 T...C...G...A

AGsg1 has low mutagenic activity: low GC and SNP

>PtAG1

...GGATCAGCTAGCTAGACTGCAGCT**ATG**GAATATCAAAATGAATCCCTTGAGAGCTCCCCCCTGAGGAAGCTAGGAAGGGGAAAGGTGGAGAT CAAGCGGATCGAGAACACCACCAATC<u>GCCAAGTCACTTTCTGCAAA</u>AGGCGCAGTGGTTTGCTCAAGAAAGCCTACGAATTATCTGTTCTTTGC GATGCTGAGGTTGCACTCATCG...

>PtAG2

Target site for AGsg1

...GATCAGCTAGGCAGGCAGCAGCT**ATG**GCATACCAAAATGAATCCCAAGAGAGCTCCCCCCTGAGGAAGCTGGGGAAGGGGGAAAGGTGGAGAT CAAGCGGATCGAGAACACCACAAATC<u>AYCAAGTCACTTTCTGCAAA</u>AGGCGGAATGGTTTGCTCAAGAAAGCCTATGAATTATCTGTTCTTTGC GATGCTGAGGTTGCACTCATCG...

Construct	Gene	GE events sequenced	Mutant events	Type of mutation	# of events (%)
AGsg1	AG1	64	7 (11%)	Homozygous	0 (0%)
				Heterozygous	7 (11%)
				None	57 (89%)
	AG2	11	0 (0%)	Homozygous	0 (0%)
				Heterozygous	0 (0%)
				None	11 (100%)

High mutation rate in poplar AG1 gene, despite AGsg1

		GE events	Mutant		
Construct	Gene	sequenced	events	Type of mutation	# of events (%)
				Homozygous	0 (0%)
AGsg1	AG1	64	7 (11%)	Heterozygous	7 (11%)
				None	57 (89%)
				Homozygous	3 (7%)
AGsg2	AG1	41	33 (80%)	Heterozygous	30 (73%)
				None	8 (20%)
		143	108 (76%)	Homozygous	10 (7%)
AGsg1-AGsg2	AG1			Heterozygous	98 (69%)
				None	35 (25%)
				Homozygous	13 (6%)
Total	AG1	248	148 (60%)	Heterozygous	135 (54%)
				None	<u>100 (40%)</u>
		184	141 (77%)	Homozygous	13 (7%)
Total (w/out AGsg1)	AG1			Heterozygous	128 (70%)
				None	43 (23%)

High homozygous mutation rates in poplar *LFY* gene

Construct	GE events sequenced	Mutant events	Type of mutation	# of events (%)
		109 (83%)	Homozygous	16 (12%)
LFYsg1 (exon 1)	131		Heterozygous	93 (71%)
			None	22 (17%)
	46	43 (93%)	Homozygous	10 (22%)
LFYsg2 (promoter)			Heterozygous	33 (71%)
			None	3 (7%)
			Homozygous	4 (5%)
LFYsg1-LFYsg2	75	70 (93%)	Heterozygous	66 (88%)
			None	5 (7%)
Cas (empty vector)	14	0 (0%)	None	14 (100%)
) 252	221 (88%)	Homozygous	30 (12%)
Total (w/out control)			Heterozygous	192 (76%)
			None	30 (12%)

High mutation rates in eucalypt *LFY* gene, but rare homozygous mutants

Construct	GE events sequenced	Mutant events	Type of mutation	# of events (%)
			Homozygous	0 (0%)
EgLFYsg1	20	17 (85%)	Heterozygous	17 (85%)
			None	3 (15%)
			Homozygous	1 (9%)
EgLFYsg2	11	10 (91%)	Heterozygous	9 (82%)
			None	1 (9%)
			Homozygous	0 (0%)
EgLFYsg1-EgLFYsg2	7	7 (100%)	Heterozygous	7 (100%)
			None	0 (0%)
Cas (empty vector)	10	0 (0%)	None	10 (100%)
			Homozygous	1 (3%)
Total (w/out control)	38	34 (90%)	Heterozygous	33 (87%)
			None	4 (10%)

Rarity of homozygous knock-outs in eucalypt *LFY* compared to poplar

Total mutations and rates	PtAG1	PtAG2	PtLFY	EgLFY
Homozygous	13 (7%)	5 (14%)	30 (12%)	1 (3%)
Heterozygous	128 (70%)	27 (77%)	192 (76%)	33 (87%)
None	43 (23%)	3 (9%)	30 (12%)	4 (10%)
TOTAL	184 (100%)	35 (100%)	252 (100%)	38 (100%)

Homozygous mutation rate in *PtLFY* below that in *EgLFY* (p=0.014, Fisher's Exact Test)

Large mutations were common among active double nucleases

Homozygous events expected to have non-functioning PtAG1

Partial peptide sequence SIESSE LEKELGRGKVEI FEIENEINKOVIECKRSSGLLKKAYELSVLCDAEVALIVESI RGRLYEVEND SIESSE LEKELGRGKVEI FADREHHOSESH FLOKAQNFAQESLRIICSLFC * GCTHRLLYERSEL * VL * SIESSE LEKELGRGKVEI SGRIPEIAKSLSAKGAVVCSRKETNYLEFAMLRLESSSLEAVAFMSEL SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCSRKETNYLEFAMLRLESSSLEAVAFMSEL SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCSRKETNYLEFAMLRLESSSLEAVAFMSEL SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCSRKETNYLEFAMLRLESSSLEAVAFMSEL SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCSRKETNYLEFAMLRLESSSLEAVAFMSEL SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCSRKETNYLEFAMLRLESSLEAVAFMSEL SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEENYLEFAMLRLESSLEAVAFMSEL SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEENYLEFAMLRLESSLEAVAFMSEL SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEENYLEFAMLRLESSLEAVAFMSEL SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEENYLEFAMLRIESSLEAVAFMSEL SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEENYLEFAMLRIESSLEAVAFMSEL SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEENYLEFAMLRIESSLEAVAFMSEL SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEENYLEFAMLRIESSLEAVAFMSEL SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEENYLEFAMLRIESSLEAVAFMSEL SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEENYLEFAMLRIEVEN SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEENYLEFAMLRIESSLEAVAFMSEL SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEENNEN SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEENNEN SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEENNEN SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEENNEN SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEENNEN SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEEN SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEEN SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEEN SIESSE SIESSE LEKELGRGKVEZSGSRIPEIAKSLSAKGAVVCERKEEN SIESSE SIESSE SIESSE SIESSEN SIESSE SIESSE SIESSEN SIESSE SIESSEN SIESSE SIESSE SIESSEN SI

Early stop codons

Outline

- Background
 - CRISPR, goals, target genes
- Mutagenesis results
 - Poplars and eucalypts
- RNAi vs. CRISPR
 - Vegetative function of eucalypt LFY?

Rarity of homozygous knock-outs in eucalypt *LFY* compared to poplar

Total mutations and rates	PtAG1	PtAG2	PtLFY	EgLFY
Homozygous	13 (7%)	5 (14%)	30 (12%)	1 (3%)
Heterozygous	128 (70%)	27 (77%)	192 (76%)	33 (87%)
None	43 (23%)	3 (9%)	30 (12%)	4 (10%)
TOTAL	184 (100%)	35 (100%)	252 (100%)	38 (100%)

Homozygous mutation rate in *PtLFY* below that in *EgLFY* (p=0.014, Fisher's Exact Test)

Klocko et al. 2016, In press, Nature Biotechnology

Euc-LFY RNAi plants have very poor growth

Control

Control, GUSPLUS, LFY 7

Control, GUSPLUS, LFY 37, 38, & 39

Control, GUSPLUS, LFY 45 & 46

LFY 7-2

qPCR studies of gene suppression underway

Summary

- CRISPR/Cas9 nucleases are highly efficient at mutation of poplar and eucalypt flowering genes
- Large mutations are frequent with multiple active sgRNAs
- *LFY* appears to have an important vegetative function in eucalypts
 - Knock-out mutants rare, RNAi severe phenotypes
- Future work
 - Determine knock-out rate among heterozygotes
 - Impact of knock-outs on field grown trees (poplar)
 - Search for new CRISPR targets for eucalypt containment

Cathleen Ma

Amy Klocko

Acknowledgments

Stef Elorriaga

Haiwei Lu

Flavia Tussulini

USDA

Clark Embleton, High School intern