RNAi and gene editing as tools for containment of genetically engineered and exotic forest trees SIVB Raleigh, NC / 2017

Steve Strauss Oregon State University / USA

Agenda

- Rationale and approaches
- RNAi
- Repressor overexpression
- CRISPR-Cas in brief
- Regulatory implications

Why genetic containment

- **Goal:** To develop robust male and female containment technologies for vegetatively propagated forest trees
- Why: Regulatory, market, and public acceptance with exotic and native trees can be costly or impossible even for field research
 - Long distance gene flow, incomplete domestication, wild or feral relatives, perception of forests as wild
- Advantage of RNAi: No toxic genes like barnase used (which can be unstable and harm vegetative development), degree of suppression can be varied, and may be highly stable
- Advantage of repressor overexpression: No flowering at all, trees remain juvenile, most rapid vegetative growth?
- Advantage of gene editing: Expected to give strongest loss of function, and be most efficient, predictable, and stable

Approaches

- <u>Bisexual sterility</u>: Target is intensely managed, vegetatively propagated elite forest tree varieties (clones), thus targeting master regulators of sexual development
 - No further breeding, or create asexual restorer systems
- <u>Suppress or mutate</u>: Floral organ identity gene AGAMOUS and floral meristem identity gene LEAFY
- <u>Repressor overexpression</u>: Use of natural floral suppressor or dominant negative form of natural activator

Flowers in strong ag mutants lack both stamens and carpels, and are indeterminate

Parcy et al. 2002; Galimba et al. 2012

Strong lfy mutants appear to have no flowers

Ify mutants

Parcy et al. 2002; Moyroud et al. 2010

Experimental field trial (summer 2016)

Experimental overview

1

2

3

4

Create RNAi constructs based on the reference sequence from *Populus trichocarpa*

Produce transgenic poplars (*P. alba* genotype 6K10, Marizio Sabbati, Univ. Viterbo, Italy)

Evaluate phenotypic changes in field (*FT* accelerated flowering impeded RNAi effects)

Haiwei Lu, PhD student, OSU

Evaluate gene expression

Two *PtAG*-RNAi constructs, with and without matrix attachment regions (MARs)

• PTG

• MPG

				1							
LB	MAR	tNOS	nptll	pNOS	tOCS	PtAG	intron	PtAG	35s	MAR	RB
											1.1.1.1.1.1

RNAi constructs contained an inverted repeat that targeted 393 bp of the non-MADS region

Targeting two paralogous (duplicated) highly similar *PtAG* genes in poplar

Summary of floral modifications

Construct ID	No. of insertion events	No. of events that flowered by 2017	No. of events with altered floral morphology		
PTG	22	22	6 (27%)		
MPG	13	12	11 (92%)		
WT-CTR	24	19	0 (0%)		

The MAR elements more than tripled RNAi suppression frequency

Floral buds on altered events flushed early

Altered events had highly modified, sterile flowers

Strongly altered events were stable within and among trees over 3 years

12 fully sterile events (2/3), 50 trees examined

Mild, correlated suppression of the two *PaAG* paralogs were associated with floral modification

Trees with altered flowers had normal vegetative growth and leaf morphology

A= Altered, N=Normal, Bars = SE of the mean

Other studies with similar effects Sweetgum LaAG-RNAi – targeted two distinct AG genes

Altered phenotypes of RNAi-AG events were stable over 3 years

RNAi-AG flowers matured into sterile, brown papery fruits

Sterility, normal growth of LEAFY-RNAi poplars over four growing seasons

limited, in large part owing to concerns over transgene flow into wild or feral tree populations1-4. Unlike other crops, trees are long-lived, weakly domesticated and their propagules can spread over several kilometers⁵. Although male sterility has been engineered in pine, poplar, and eucalyptus trees grown under field conditions by expression of the barnase RNase gene in anther tap et al cells^{6,7}, barnase can reduce rates of genetic transformation and vegetative growth⁶. Furthermore, barnase expression may not be fully stable⁸. Bis exual sterility would allay concerns over seed dispersal, could be used to control invasive exotic trees, and might in crease wood production⁹. We

poplar.

RNAi has been used to reduce gene expression in many plant species10,11, and the reduction in gene expression that RNA i confers is highly stable in trees under field conditions¹². LFY is required for the early stages of male and female floral organ formation in plants, and encodes a transcription factor that promotes floral meristem identity13,14. In Arabidopsis thaliana, loss of LFY function results in the formation of vegetative structures instead of floral meristems, whereas reduction of LFY expression decreases floral abundance and results in partial conversion of floral organs to leaf-like structures^{13,14}. We selected LFY

Klocko et al. 2016, Nature **Biotechnology**

Floral suppressors: Scored extent of flowering in all trees

80% of all SVP-OE events showed floral abundance scores of less than 2

Striking differences among flowering vs. non-flowering adjacent events

717 SVP event 122 no flowers

Non-flowering events had high expression of *PtSVP* in leaves

Emily Helliwell, Former postdoc

Future of floral suppressor studies

- Study of two additional successful suppressors based on mutated *AP1* gene
- Studies of growth effects underway some appear likely
- Superior method likely to be CRISPR promoter engineering vs. simple 35S overexpression

CRISPR Casgene editing

Experimental constructs – single and double targets per gene, no CRISPR removal

Control construct

High CRISPR mutation rates observed

- Cas9-only control events
 - No mutations (62 events, poplar and eucalypts)
- CRISPR-Cas events
 - <u>Poplar</u>: 73% of events were knock-outs (488 events tested, *AG* and *LFY*)
 - <u>Eucalypts</u>: 97% knock-outs (70 events, *LFY*)
- Off-target studies underway

LFY knock-out in rapid flo background

Who did the work? Flowering research team 2016-17

Cathleen Ma, Transformation & Greenhouse Experiments

Anna Magnuson, Program & Field Manager

Emily Helliwell, Post-Doc, Genomics and **Bioinformatics**

Amy Klocko, Post-doc, Cloning, Gene Expression, Flowering

Estefania Elorriaga, Grad Student, **CRISPRs**

Michael Nagle, Grad Student, Gene Targets

Jeremy Jacobson, Undergraduate Research

Haiwei Lu, Grad Student, ZFNs

Sarah Higgins, Technician, Floral Analysis

Thanks for support

United States Department of Agriculture

National Institute of Food and Agriculture

Futuragene, SAPPI, SweTree, U. Pretoria, Arborgen