
Tansley review

Reproductivemodification in forest plantations:
impacts on biodiversity and society

Author for correspondence:
Steven H. Strauss

Tel: +1 541 737 6578
Email: Steve.Strauss@OregonState.Edu

Received: 17 August 2016

Accepted: 26 October 2016

Steven H. Strauss1, Kristin N. Jones1, Haiwei Lu1, Joshua D. Petit1,

Amy L. Klocko1, Matthew G. Betts2, Berry J. Brosi3, Robert J. Fletcher Jr4 and

Mark D. Needham1

1Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA; 2Forest Biodiversity Research

Network, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA; 3Department of

Environmental Sciences, Emory University, Atlanta, GA 30322, USA; 4Department ofWildlife Ecology and Conservation, University

of Florida, Gainesville, FL 32611, USA

Contents

Summary 1000

I. Introduction 1000

II. Impacts of reproductive modification 1001

III. Synthesis 1014

IV. Research priorities 1015

V. Conclusion 1016

Acknowledgements 1016

References 1016

New Phytologist (2017) 213: 1000–1021
doi: 10.1111/nph.14374

Key words: biotechnology, genetic
engineering, genetic modification, genetically
modified organism, landscape, pollinator, risk
perception, seed.

Summary

Genetic engineering (GE) can be used to improve forest plantation productivity and tolerance of

biotic and abiotic stresses. However, gene flow from GE forest plantations is a large source of

ecological, social and legal controversy. The use of genetic technologies to mitigate or prevent

gene flow has been discussed widely and should be technically feasible in a variety of plantation

taxa. However, potential ecological effects of such modifications, and their social acceptability,

are notwell understood. Focusing on Eucalyptus, Pinus, Populus and Pseudotsuga – genera that
represent diverse modes of pollination and seed dispersal – we conducted in-depth reviews of

ecological processes associatedwith reproductive tissues.We also explored potential impacts of

various forms of reproductive modification at stand and landscape levels, and means for

mitigating impacts. We found little research on potential reactions by the public and other

stakeholders to reproductive modification in forest plantations. However, there is considerable

research on related areas that suggest key dimensions of concern and support. We provide

detailed suggestions for research to understand the biological and social dimensions of

containment technologies, and consider the role of regulatory and market restrictions that

obstruct necessary ecological and genetic research.

I. Introduction

The Earth’s forests and associated biodiversity supply vast quan-
tities of ecosystem services and products, including clean water,
human and wildlife habitat, erosion control, carbon storage,
medicines, and wood, chemical and energy products. Increases in
the global human population (projected to grow from 7.1 to

8.3 billion by 2030) are expected to dramatically increase demand
for forest products, such as timber by 129 million m3 (FAO et al.,
2012). Resource extraction has traditionally come at the cost of
forest loss and degradation, with a loss of c. 13 000 ha yr�1 (FAO
et al., 2012), which, in turn, drives biodiversity loss (Pimm et al.,
2014) and declines in ecosystem services (Gamfeldt et al., 2013).
Tree plantations are recognized as a partial solution (Brockerhoff
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et al., 2008), as they usually have higher rates of wood volume
accumulation than natural forests. Approximately 35% of the
world’s wood supply is generated by plantations, yet they comprise
only 5% of the global forest area (FAO, 2010).

Tree breeding, increasingly accompanied by genomic methods,
is ubiquitous in plantationmanagement and is a major contributor
to high rates of plantation productivity. In recent years genetic
engineering (GE) – defined here as the direct and asexual alteration
of DNA in living organisms – has been proposed as a new tool for
tree breeding. Because GE can be used for changing native genes or
transferring in novel functions, it has the potential to produce a
variety of modified or novel traits. A large body of field research has
shown that GE methods appear capable of delivering improve-
ments to plantation productivity, wood processing, pest resistance
or chemical products (FAO, 2010;H€aggman et al., 2013; Table 1).
In some cases, the improvements can be substantial, such as
elevating productivity in the field by c. 20% in poplar (Klocko et al.,
2014; Lu et al., 2014; Ault et al., 2016).However, themovement of
seeds and pollen fromGE plantations to feral and wild populations
(hereafter termed ‘gene flow’) has been highly contentious in its

regulatory treatment, public acceptance and possible impacts on
markets. For example, pollen ‘contamination’ of non-GEproducts,
an important economic problemwithGE crops, may be evenmore
difficult withGE plantation trees as a result of their typically longer
dispersal distances. Pollen from GE eucalypts (that might
contaminate honey products) was cited as a concern related to
the growing commercial use of GE eucalypts in Brazil (Petermann,
2015) – where GE reproductive modification is illegal – and was a
contributing factor to vandalism of company glasshouses (Marty,
2015).

In order to mitigate the social and biological problems of gene
flow, GE methods that would reduce or prevent gene flow have
been developed, but their potential impacts on biodiversity and
society have received limited attention. Removal of pollen and/or
seeds could obviously impact pollinators, as well as nectar- and
seed-consuming organisms, and thus deserves careful consideration
for each potential application so that this potential fix to the
problem of gene flow is used judiciously and does not needlessly
reduce the benefits of GE traits, or exacerbate rather than attenuate
global impacts of plantations on biological diversity.

The primary goals of this paper are to evaluate the potential
ecological impacts that modifications to forest tree reproduction
might have on biodiversity, contextualize these impacts by
comparing them to effects of other forms of forest management
on reproductive activity, and examine how reproductive modifi-
cation technology is expected to affect public, interest group and
government responses. We focus primarily on the potential
biodiversity and social impacts of GE reproductive modification;
the impacts of other types of GE plantation modifications and the
potential consequences of gene flow from GE plantations (when
allowed or encouraged) have been discussed elsewhere, including in
a recent compendium volume on GE forest biotechnologies
(Vettori et al., 2016).

II. Impacts of reproductive modification

We begin by outlining methods for GE of reproduction in forest
trees. Then, to help interpret the significance of GE modifications
to reproduction, we discuss the extent that forestmanagement itself
impacts tree reproduction. Next, we discuss the extent that various
organisms utilize reproductive resources in our target genera. We
conclude by considering the social factors that could influence
acceptance or rejection of GE reproductive modification. Our
methods for literature searches related to biodiversity and social
dimensions are provided in Supporting Information Notes S1.
These searches were structured to gather information related to a
number of explicit hypotheses (Notes S2).

1. GE reproductive modification

There are a variety of potential and demonstrated options for GE-
based reproductionmodification in trees (reviews in Brunner et al.,
2007; Vining et al., 2012). In addition to the goal of containment,
reproductive modification also has been sought as a means to
improve vegetative growth by increased allocation of photosyn-
thetic resources (Strauss et al., 1995), reduce the production of

Table 1 Examplesof field trials of genetically engineered (GE) trees that have
showed efficacy or promise in delivery of target traits

Tree species Trait Reference

American Chestnut
Castanea dentata

Fungal blight
resistance

Maynard et al.

(2009);
Zhang et al. (2013)

American Elm
Ulmus americana

Dutch elm disease
resistance

Newhouse et al. (2007);
Sherif et al. (2016)

Silver Birch
Betula pendula

Fungal rust
resistance

Pasonen et al. (2004)

Poplar
Populus tremula

9 alba

Biomass allocation Lu et al. (2015)

P. tremula9 alba Tree size Elias et al. (2012)
P. tremula9 alba Improved pulpabillity Pilate et al. (2002);

Coleman et al. (2012);
Mansfield et al. (2012)

P. tremula9 alba Decreased lignin Franke et al. (2000);
Pilate et al. (2002)

P. tremula9 alba Specialty chemical
production

Costa et al. (2013)

P.9 canescens Reduced isoprene
emissions

Behnke et al. (2012)

P. tremula9 alba Nitrogen assimilation Jing et al. (2004)
P. trichocarpa9

deltoides, P. tremula9

alba, P. tremula9

tremuloides,
P. trichocarpa

9 nigra

Herbicide tolerance Meilan et al. (2002);
Ault et al. (2016)

P. nigra, P. deltoides
9 nigra,
P. trichocarpa 9

deltoides

Insect resistance Hu et al. (2001);
Klocko et al. (2014)

P. davidiana
9 bolleana

Salt tolerance Yang et al. (2015)

P. alba Flowering control Klocko et al. (2016b)
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allergenic pollen and decrease nuisance reproductive tissues in
urban trees. Most published studies of GE have focused on male-
sterility because pollen is the main source of long-distance spread
and seed propagation would allow for continued sexual breeding.
One method for obtaining male-sterility, genetic ablation (i.e. cell
elimination), was first developed and commercialized in agricul-
ture, and is effective and reliable in field trials ofPopulus,Eucalyptus
and Pinus (Zhang et al., 2012; Elorriaga et al., 2014; Fig. 1).
However, because many intensively grown forest trees, most
notably poplars and eucalypts, have seeds that can travel large
distances by wind, water or animals, research also has focused on
achieving complete bisexual (male and female) sterility. Both
poplar and eucalypt plantations are widely established via vegeta-
tive cuttings, such that loss of seed productionwill still allow for tree
propagation and establishment using current methods. Published
results for achieving female or bisexual sterility have emphasized
suppression of key flowering genes by RNA interference (Klocko
et al., 2016b; Fig. 2), a method that can be highly stable in field-
grown trees (Li et al., 2008). Direct editing of floral genes by use of
CRISPR-Cas nucleases or similar approaches should be even more
stable as entire genes can be deleted (Elorriaga et al., 2015), but to
our knowledge, gene-edited trees have yet to be tested in the field.
Other methods that have been proposed for trees, but not yet
demonstrated in the field, include the use of developmentally
inducible recombinases to excise (i.e. to selectively remove from the
genome) GE-modified genes during the formation of gametes.
This approach would allow normal flowering yet little or no release
of transgenes. Genes that suppress the age-related onset of
reproduction also are potential targets for breeding or GE, as a
wide array of floral suppressor genes has been identified in basic
plant research (Pajoro et al., 2014).

A common concern is that containment will be incomplete or
unstable, or that asexual forms of dispersal will still allow for gene
flow (Brunner et al., 2007). In poplar, which has been widely
studied, field research and simulations show that even incomplete
or unstable male and female sterility would still provide high levels

of genetic containment in various scenarios, including when linked
to a strong fitness-promoting gene such as one giving resistance to
an important herbivore of poplar (DiFazio, 2002; DiFazio et al.,
2012). Vegetative spread was also found to be a weak means of
dispersal compared to pollen and seed. It is possible to modify
organisms to prevent or slow vegetative spread, such as by
preventing rooting except in the case of gene induction. However,
to our knowledge, such methods have never been shown to be
effective and vegetative spread can often be readily controlled by
forest management rather than genetic methods (e.g. by scouting
for and removing root and branch sprouts within and near to
plantations). It also appears feasible to engineer post-flowering
forms of containment by targeting genes required for pollen tube
growth or fertilization, or genes that take part in embryogenesis.
Many such genes have been characterized in model plants (Wang
et al., 2008; De Smet et al., 2010), which might enable the
production of floral and fruit organs with essentially normal
nutritive value for biodiversity, but without the possibility of
propagule growth and development. However, to our knowledge,
such methods – although widely discussed for crops and for which
there are a number of patents for reversible forms – have not been
developed or field-tested in crops or trees (Lombardo, 2014).Given
the wide scope for continued genetic innovation as knowledge of
genes, development andmethods for geneticmodification grow,we
can expect to see many refinements and new forms of genetic
containment technologies in the future.

2. Impacts of forest management on reproductive activity

Intensive forest management practices often strongly influence
reproductive activity. Perhaps the most extreme examples are short
rotation bioenergy plantations that are managed on a one- to few-
year coppice system (Santangelo et al., 2016). Trees such as poplars
are densely planted and literally cut-off near ground level during
annual or semi-annual harvests, allowed to re-sprout from the
roots, and then cut and re-sprouted for multiple harvest cycles.

(a) (b)

(c) (d)

(e)

Fig. 1 Barnase expression leads tomale sterility in field-grown trees.Male catkins ofPopulus tremula9 tremuloides clone INRA353-53 showingpollen release
in Petri dishes from (a) control but not from (b) barnase trees (S.H. Strauss, unpublished; scientific background in Elorriagaet al., 2014). Eucalyptus occidentalis
flowers of (c) control and (d) barnase (note shriveled anthers that are not releasing pollen). (e) Pinus rigida9 taedamale cone clusters of GUS control (left) and
barnase (right) in pollen isolation bags. Control flowers shed large quantities of pollen grains, whereas pollen grains were absent from barnase flowers. Panels
(c–e) reprinted with permission from Zhang et al. (2012).
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Given this early harvest, trees are kept in a largely juvenile phase of
fast growth with little or no flowering. However, even in longer
rotation forest plantation systems, trees normally do not become
reproductively active for several years, and the high planting density
common to most systems (to suppress weeds, promote height
growth and stimulate branch pruning), further delay the onset of
reproduction and reduce the intensity of flowering and fruit
production.

Thinning, or low natural stocking, has been associated with
increased reproductive activity in a number of studies. For example,
Verkaik & Espelta (2006) reported that Aleppo pine (Pinus
halepensisMill.) showed two- to six-fold increases in the number of
new cones produced per tree in thinned stands compared to
unthinned stands. Thinning also led to a four-fold increase in the
percentage of newly reproducing trees. Benefits of thinning can last
for 5 yr or more, as in Pinus taeda (Kozlowski et al., 2012). This
common trend (i.e. negative correlation between reproduction and
stand density) was supported in 15 of 18 studies on conifer species
(Table 2). Exceptions to this trend were observed in both wild
stands (Moya-Lara~no et al., 2007; Ruano et al., 2015) and seed
orchards (Copes & Bordelon, 1994), perhaps because densities
already were quite low, or as a result of other environmental factors
known to affect flowering intensity (e.g. fertilization and irrigation
in seed orchards).

Intensive genetic selection for rapid growth can further reduce
the onset or intensity of reproduction, especiallywhere propagation
systems do not bias propagules toward those that flower early and
most intensively (e.g. young seed orchards). In maritime pine

(Pinus pinaster), Santos-del-Blanco et al. (2015) reported that a
single cycle of selection for timber yield decreased the proportion of
reproductive trees (51% in selected group vs 66% in control
group), delayed the age and size at first reproduction, lowered the
reproductive-to-vegetative allocation ratio, and affected the pro-
portion of protandrous vs hermaphroditic individuals.

3. Stand-level biodiversity impacts

Modifying tree reproduction and changes in resources In order
to interpret the potential impacts of flower modification on
biodiversity, we need to be able to interpret how the impairment
of plant reproduction can influence resources, which may then
influence communities and ecosystem processes in a diversity of
ways (Fig. 3). Impairing flower reproduction may alter the
availability of pollen, nectar, fruits and seeds. Understanding
both how tree reproductive resources are used by animals, and the
nature and timing of changes in reproductive activity, are
important for interpreting potential effects and may vary widely
among taxa (Fig. 4). For example, alterations of male vs female
flowering, changes in the time of year that flowering occurs and
changes in the year of onset during a tree rotation will have
differential impacts on dependent organisms. As discussed above,
genetic methods can bring about different floral modifications,
including a complete absence of flowers, pollen-less flowers, and
(at least in theory) ecologically normal flowers, fruits and seeds
whose pollen and seed are unable to give rise to viable progeny, or
lack transgenes.

(a) (b)

(d) (e)

(c)

(f)

(g)

Fig. 2 RNAi of floral genes is effective at
altering tree floral morphology and fertility in
field trials. (a) Wild-type (WT) female poplar
catkins with well-developed carpels,
(b) female sterile RNAi-LFY poplar catkin
lacking externally visible carpels (Klocko et al.,
2016b), (c) female sterile RNAi-AG poplar
catkin with replicated carpels (unpublished
data, Strauss Lab), (d) WT female sweetgum
flower with numerous white stigmas,
(e) female sterile RNAi-AG sweetgum with
stigmas converted to leaf-like projections
(Klocko et al., 2016c), (f) WT apple flowers
with five petals, 20 stamens and five styles,
(g) RNAi-AG apple flowers with anthers and
styles converted to petals and reduced male
and female fertility (Klocko et al., 2016a).
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The relative impacts of floral modification byGEwill depend on
the plantation system in place and on natural environmental
variation. Even without GE floral modification, resources from
flowering can be extremely rare, either due to short-rotation
harvests occurring largely before reproductive onset (e.g. bioenergy
plantations;Munsell&Fox, 2010) orwhen flowering occurs late in
a rotation or at a low level due to high stand density, as discussed
above. In these situations, resources from reproduction are limited
or absent in existing plantations, such that flowermodificationmay
have negligible consequences for altered resource distribution. In
many plantations, resources from reproduction such as pollen,
nectar and short-lived seeds may only be available during brief

times of year, such that those resources are only available to certain
members of the community and for a restricted period of time
(Table 3). Across plantation tree species, the type of reproductive
output, its quantity (e.g. seedfall or biomass of pollen) and its
nutritive value, will vary. Natural environmental variation can also
exert strong effects on reproductive resources, both due to variation
in weather (e.g. moisture stress; Yuccer et al., 2003) and climatic
cycles. Many tree species fail to reproduce for many years then
flower heavily in others (masting), with flowering associated with
complex climate and weather variation (e.g. Sakai et al., 2006).
Many conifers, including our focal genera Pinus and Pseudotsuga,
have well-known masting cycles (Koenig & Knops, 1998). In

Pollen Pollen

Seed

Staminate
cone

Pistillate
cone

Staminate
catkin

Pistillate
catkin

Wind Wind

Sun
Cloud

Precipitation

mrepsoignAmrepsonmyG

Flower or nectar

Fruit or seed

Landscape mosaic Juvenile planted stand

Nutrient cycling

Fig. 3 Schematic overview of potential tree reproduction–biodiversity relationships in our focal gymnosperm (Pinus, Pseudotsuga) and angiosperm (Populus,
Eucalyptus) genera. Circles with nearby organisms show the diversity of reproductive structures, which species may use or consume. Arrows show how
reproductive structure deposition to soil or water, or contributions to local air masses, may affect nutrient cycling or local climate. The stands near the bottom
showhowreproductivelymodified trees areexpected tobeapartof juvenile, oftenmono-species plantations, andparts of landscapemosaics ofwild standsand
plantations of diverse ages and species compositions.
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addition to this temporal variability, monoculture plantations also
represent a spatial aggregation of floral resources. In agricultural
contexts, monocultures of mass-flowering crops can impact
pollinators both positively and negatively (Westphal et al., 2006),
implying that floral modification in mass-flowering tree planta-
tions may also have impacts on pollinator populations, pollination
services and honey production.

Resource consumers and biodiversity changes Although searches
including terms for GE reproductive modification yielded > 400
results, we found no empirical studies of impacts of GE reproduc-
tive modification on biodiversity, thus all of the inferences below
are based on studies of reproduction–biodiversity relationships in
conventional plantations or wild stands.

Classifying animals into functional groups, rather than
considering them taxonomically, facilitates understanding of
the potential effects of resources changes on biodiversity. We
analyze functional groups in terms of the morphological
component(s) of the plant reproductive tissues that are fed
upon. We begin with nectar (nectarivory) and pollen (pa-
lynivory) feeders, which we functionally lumped together with
pollinators because they typically consume nectar and/or pollen
rewards. We then consider florivory, which we define as
consumption of whole or partial flowers before seed coat
formation (McCall & Irwin, 2006). When pollination is
successful, a range of organisms feed on seed (spermivory) and
fruit (frugivory), both pre- and post-dispersal. These categories
are helpful in understanding the animal taxa involved, but
species often feed on multiple stages of plant reproductive
tissues. In discussing the taxa potentially impacted, we highlight
economically and culturally important species, as well as those
that are legally protected. Organism–tree genus associations from
the literature are summarized in functional groups in Table 4.

Nectarivory and palynivory Many consumers of nectar and
pollen also are pollinators, typically defined as animal pollen
vectors (i.e. they move pollen between different flowers). Pollina-
tors represent a substantial component of animals that feed on
plant reproductive tissues, however, not all nectarivores and
palynivores are pollinators. There are cases where flower visitors
consume pollen and/or nectar without transferring pollen between
flowers. One example of this is nectar robbery where a flower
visitor circumvents flower opening to remove nectar without
contacting anthers or stigmas (Irwin et al., 2010). Pollination as an
interaction likely evolved from palynivory by beetles (Labandeira
& Eble, 2000) although palynivory without at least some
incidental pollen transfer may be rare given that most palynivores
will visit multiple flowers and likely carry some pollen on their
bodies. The exception is in monoecious or dioecious plants where
palynivores may be able to focus exclusively on male flowers or
plants. Three of our focal genera – Pinus, Populus and Pseudotsuga
– are wind-pollinated and thus do not produce floral nectar (Fig. 4;
Table 3). These taxa likely have a community of palynivores,
although we could find no studies characterizing the pollen-
feeding assemblages of these taxa.

The primary tree genus that is animal-pollinated and also the
focus of transgenic developments is Eucalyptus, which has a diverse
and substantial community of flower visitors that vary depending
on geographic location and species. This list includes marsupials,
birds and a diverse assemblage of insects (Table 4). In plantations
without active pollination management, seed production is often
low and pollen-limited (reviewed in Moncur et al., 1995), which
may result in reduced seed consumer abundance and/or richness
compared with other land uses. Most Eucalyptus species provide
copious and sugar-rich nectar resources (Moncur et al., 1995), and
beekeepers inmany parts of the world will bring honey bee colonies
to plantations during flowering to promote honey production

(a) (b)

(d) (e)

(c)

(f)

(g)

Fig. 4 Reproductive structures of Pinus, Populus, Pseudotsuga and Eucalyptus. Pistilate cones and catkins of (a) Pinus taeda, (b) Pseudotsuga menziesii and
(c) Populus alba. Staminate cones of (d) P. taeda, (e) P. menziesii and staminate catkins of (f) P. deltoides. (g) Eucalyptus globulus produces fruit and perfect
flowers. Photograph in (c) by author Amy Klocko. Source for other images: http://bobklips.com/treeflowersmenu.html.
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Table 4 Count of organisms associated with reproductive structures/products of Eucalyptus, Pinus, Populus, Pseudotsuga

Taxonomic
group Organism association Eucalyptus Pinus Populus Pseudotsuga References

Birds Catkin feeder . . 1 . Jakubas et al. (1993), Lindroth & St Clair (2013)
Florivore 4 . 1 . Marsden & Pilgrim (2003); Guglielmo & Karasov (1995)
Frugivore, Nectivore 3 . . Hingston & Potts (2005)
Frugivore, Nectivore,
Spermivore

1 . . . Hingston & Potts (2005)

Frugivore, Nectivore,
Spermivore, Florivore

2 . . Hingston & Potts (2005)

Nectivore 27 . . Leveau & Leveau (2011), Hingston et al. (2004a),
Hingston & Potts (2005), Cecere et al. (2011),
Calvi~no-Cancela & Neumann (2015), Bennett et al. (2014)

Nectivore, Palynivore 2 . . . MacNally & Horrocks (2000), Hingston et al. (2004a)
Palynivore 7 . 1 . Roulston & Cane (2000); Witmer (2001)
Spermivore 1 13 . 6 Hingston & Potts (2005); Snyder et al. (1994), Summers &

Proctor (1999), Summers (2011), Benkman & Parchman (2009),
Williams (2009), Vander Wall (2008), Vander Wall (1994),
Tomback & Achuff (2010), Thayer & Vander Wall (2005),
Siepielski & Benkman (2007), (2004), Rumble & Anderson (1996),
Parchman & Benkman (2008), Myczko et al. (2015), Mezquida &
Benkman 2005, Johnson et al. (2003), Garcia-del-Rey et al.
2011), Christensen & Whitham (1993), Chen & Chen (2011),
Benkman (2010), Benkman (1993), Barringer et al. (2012),
Bardwell et al. (2001); Smith & Balda (1979)

Fungi Palynivore . 2 . . Hutchison & Barron (1997)
Invertebrates Catkin feeder . . 1 . Leatherman (2011)

Hyphaevore 1 . . . Mound (1998)
Nectivore 77 . . . Hingston et al. (2004a), Griffin et al. (2009), Menz et al. (2015)
Nectivore, Palynivore 22 . . . Hingston et al. (2004b), Sime~ao et al. (2015), Griffin et al. (2009),

Oliveira-Abreu et al. (2014), Obregon & Nates-Parra (2014)
Palynivore 5 9 . . More et al. (2010), Millar et al. (2003), Hilgert-Moreira et al.

(2014), Arien et al. (2015), Araneda et al. (2015);
Sivilov et al. (2011), Riley et al. (2011),
Pernal & Currie (2000), Graham et al. (2006),
Czechowski et al. (2008), Angelella & Riley (2010),
Abdullah et al. (2014)

Spermivore . 11 . 12 Teste et al. (2011), Siepielski & Benkman (2004),
Millar et al. (2003), Dormont & Roques (1999),
de Groot & DeBarr (1998), Christensen &
Whitham (1993), Bellocq & Smith (1994),
Barringer et al. (2012); Mailleux et al. (2008),
Smith & Balda (1979)

Mammals Catkin feeder . . 1 . Willson et al. (2012)
Frugivore . 1 . . Mikich & Liebsch (2014)
Nectivore 1 . . . McCartney et al. (2007)
Nectivore, Palynivore 1 . . . Dobson et al. (2005)
Palynivore 1 . . . van Tets & Hulbert (1999)
Spermivore . 35 . 9 Summers & Proctor (1999), Benkman & Parchman (2009),

Vander Wall et al. (2008), (2003), (2002), (2000), (1995),
(1994), (1993), Tomback & Achuff (2010), Thayer & Vander Wall
(2005), Siepielski & Benkman (2004), Rong et al. (2013),
Podruzny et al. 1999), Parchman & Benkman (2008), Molinari
et al. (2006), Mezquida & Benkman (2005), Kuhn & Vander Wall
(2007), Johnson et al. (2003), Hollander & Vander Wall (2004),
Hamer & Pengelly (2015), Gunther et al. (2014), Elias et al.
2006), Costello et al. (2014), Christensen & Whitham (1993),
Chen & Chen (2011), Brzezi�nski (1994), Briggs et al. (2009),
Becker et al. (1998), Asaro et al. (2003); Smith & Balda (1979),
Smith (1970), Trebra et al. (1998)

Microbiota Palynivore . . 2 . Masclaux et al. (2011)

Numbers represent a summation of records noting species and/or genera associated with reproductive structures/products. In some cases, multiple records
came from the same reference. Reference order corresponds to organism count order in each row. References separated by commas indicate multiple
references corresponding to one count. References corresponding to distinct combinations of feeding mode and tree species are separated by semicolons.
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(Moncur et al., 1995; Invernizzi et al., 2011). However, honey bee
colonies apparently cannot be sustained on Eucalyptus floral
resources alone, likely due to the relatively low protein content of
pollen (Moncur et al., 1995; Invernizzi et al., 2011). Among flower
visitors are several species that are of conservation concern in some
regions, including the Swift Parrot (Lathamus discolor) and the
Blue-EyedCockatoo (Cacatua ophthalmica), which are endangered
and vulnerable species that frequently feed on nectar, flowers and
pollen (Marsden & Pilgrim, 2003; Hingston et al., 2004b;
Hingston & Potts, 2005). Two mammals, the Lesser Short-Tailed
Bat (Mystancina tuberculate) and the Black Capuchin (Sapajus
nigritus), also have been shown to consume Eucalyptus fruit and
pollen (McCartney et al., 2007; Mikich & Liebsch, 2014).

Florivory Although florivory includes consumption of, or
damage to, pollen and ovules (or immature seeds) in addition
to other floral structures (e.g. bracts, petals, pistils, stamens), here
we exclude strict pollen/ovule consumption from florivory as
already discussed. Florivory has been relatively understudied
(McCall & Irwin, 2006) and there is little information on how
florivory impacts the tree genera that are the focus of this review.
One exception is the Douglas Squirrel (Tamiasciurus douglasii),
which is known to consume entire mature pollen cones of
Douglas-fir (Pseudotsuga menziesii; Maser et al., 1981). Another
exception is Populus catkins, as several bird species use them for
food. Cedar Waxwings (Bombycilla cedrorum) consume male
catkins of Eastern Cottonwood (Populus deltoides). In experimen-
tal feeding trials, Witmer (2001) showed that captive waxwings
lost body mass on a diet of Viburnum opulus fruits unless their diet
was supplemented by P. deltoides catkins, whose pollen was shown
to be an important source of supplemental protein. Similarly,
quaking aspen (Populus tremuloides) flower buds and catkins
comprise a significant portion (66–100%) of the winter and
spring diet of the ruffed grouse (Bonasa umbellus; Jakubas et al.,
1993), although its high amounts of secondary metabolites also
reduce its nutritional value. Various bird species may also use
Populus catkins indirectly as a source of invertebrate food. For
example, long-snouted weevil (Dorytomus spp.) larvae feed on
pollen grains within staminate catkins and may provide a
supplemental food source for birds during energy-intensive
migration (Leatherman, 2011).

Spermivory Seeds and plant ovules represent a rich resource
utilized by various animals.We treat this separately from frugivory,
or fruit consumption, which often also involves seed consumption,
and which is covered below. Seed and ovule feeding (hereafter
referred to as ‘seed’ for simplicity) can take place in various floral
developmental stages and ecological contexts. Seeds can be
consumed pre- or post-dispersal (Howe & Smallwood, 1982), by
insect larvae that develop exclusively within a single seed and by
vertebrates that consumemany seeds over the course of a single day.
In general, themode of seed dispersal is of ecological importance for
spermivory, given that wind- (or gravity-)dispersed seeds (includ-
ing Pseudotsuga, Populus and Eucalyptus) tend to be of low nutritive
value relative to most animal-dispersed seeds (including those of
Pinus; e.g. Gautier-Hion et al., 1985).

Two of our focal tree genera – Populus and Eucalyptus – are not
considered animal dispersed and have relatively non-nutritious
seeds that do not serve as a substantial resource for animal
communities. For example, Eucalyptus globulus is considered
gravity-dispersed and most seeds are estimated to fall within 20 m
of the parent plant (Skolmen&Ledig, 1990). A study of this species
in Spain, where it is an exotic, found no evidence of any seed
predation or animal-mediated seed movement (Calvi~no-Cancela
& Rubido-Bar�a, 2013). Similarly, Populus has small wind-
dispersed fruits with single seeds that are unlikely to be an
important food source for vertebrates (Zasada et al., 1992).

However, the dichotomy between animal dispersal and wind/
gravity dispersal is not perfect, and of one our focal genera,
Pseudotsuga, is a counterexample. Its seeds are winged and thought
to be dispersed primarily by wind and gravity (e.g. Fowells, 1965),
but are food items for: a number ofmammals includingmice, voles,
shrews and chipmunks (Gashwiler, 1970); birds including the
Winter Wren (Troglodytes hiemalis), Pine Siskin (Carduelis pinus),
Song Sparrow (Melospiza melodia), Golden-Crowned Sparrow
(Zonotrichia atricapilla), White-Crowned Sparrow (Zonotrichia
leucophrys), Dark-Eyed Junco (Junco hyemalis) and Purple Finch
(Haemorhous purpureus) (Arno&Hammerly, 1977); and a range of
insect seed predators (Strothmann & Roy, 1984). Relatively
specialized feeders on Pseudotsuga seeds include the aforemen-
tioned Douglas Squirrel (Arno &Hammerly, 1977) and potential
subspecies of red crossbill, including the Douglas-fir Red Crossbill
(Loxia curvirostra neogaea; Parchman et al., 2006).

Of our focal tree genera, spermivory is likely the most important
in Pinus. Pine seeds are considered to be wind- or gravity-dispersed
in c. 85 of the 110 species in the genus, with the remaining 25 or so
considered to be primarily animal dispersed, including the well-
knownClark’sNutracker (Nucifraga columbiana)–Whitebark Pine
(Pinus albicaulis) symbiosis (Tomback & Linhart, 1990). A rich
community of animals feed on pine seeds (‘pine nuts’ to human
consumers), including from species that are considered wind-
dispersed (e.g. VanderWall, 2008). This includes several species of
conservation concern including the Tenerife Blue Chaffinch
(Fringilla teydea), a species endemic to Spain that primarily eats
Pinus sylvestris seeds (Garcia-del-Rey et al., 2011). Similarly, the
Maroon-fronted Parrot (Rhynchopsitta terrisi) and Thick-billed
Parrot (Rhynchopsitta pachyrhyncha) are spermivores native to the
southwestUSA andMexico that feed primarily on seeds frompines
such as Pinus ponderosa, P. menziesii, Pinus engelmanii and Pinus
arizonica (Snyder et al., 1994).

Frugivory Frugivory, or consumption of fruit, technically only
occurs in angiosperms because gymnosperms do not produce fruit
(they are named for their naked (‘gymno’) seed (‘sperm’)). Thus,
seed consumption in gymnosperms, including Pinus and
Pseudotsuga, is considered spermivory. Of our target species,
frugivory in the angiosperms – Eucalyptus and Populus – is not
substantial, as discussed above under spermivory.

Specialization on resources The degree that species specialize on
reproductive resources will influence the extent that altering
reproduction will impact populations and communities. In
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general, it is frequently acknowledged that highly specialist
pollinators (Waser et al., 1996; Bascompte et al., 2003) and
frugivores (Ottewell et al., 2014) are rare. This is particularly the
case in temperate systems where interannual and seasonal variation
in flower and fruit availability makes specialization an evolution-
arily risky strategy (Waser et al., 1996). For those species that do
specialize on these resources, flower modification may have
negative impacts. We expect that specialization will be less likely
to occur when plantations use non-native tree species, but this will
dependpartially on evolutionary similarity between tree species and
native species in the area, and the length of cultivation in the new
geography. In addition, specialists may be uncommon in planta-
tion forests (Bremer&Farley, 2010), such that flowermodification
may have few impacts because these species may already be absent.

4. Landscape-level impacts

Management practices often have effects beyond those observed at
local scales; composition and configuration of habitats can have a
considerable influence on biodiversity at regional and global scales
(Turner, 1989;Haddad&Tewksbury, 2005). Such effects become
particularly pronounced as landscapes becomemore homogeneous
(i.e. beta-diversity is reduced; Van der Plas et al., 2016). Given
uncertainty about the degree that GE-induced changes to tree
reproduction may influence habitat quality across taxa, here we
consider five potential scenarios for landscape-scale effects: (1)
creation of low-quality or nonhabitat, (2) plantations as permeable
matrix, (3) the emergence of ecological traps, (4) changes in
nutrient cycling; and (5) impacts on local and regional climate.

GE plantations as low-quality or nonhabitat Removal of repro-
ductive structures is most likely to render habitats of reduced
quality, or nonhabitat, for pollinators and seedeaters. Much has
been written on the effects of habitat loss and fragmentation on
native biodiversity over the past 20 yr. Ultimately, it is the spatial
extent of habitat loss due to GE plantations across the landscape
that will determine compatibility with biodiversity (Fahrig, 1998;
Hanski, 1998). IfGEplantations result in onlyminor habitat loss at
the landscape scale (e.g. < 5–20%), we consider population-level
effects to be highly unlikely (e.g. Andr�en, 1994; Fahrig, 2003). At
these levels of habitat loss, population declines should be marginal
and remaining habitat would tend to be highly connected, which
facilitates inter-patch dispersal. However, both theoretical (Fahrig,
1998) and empirical work (Andr�en, 1994; Betts et al., 2007) have
indicated that thresholds exist where habitat decline results in
disproportionate population declines. Mechanisms for such
thresholds are many and include reduced dispersal capacity once
landscapes become highly fragmented by nonhabitat (Hanski,
1998), Allee effects (i.e. positive density dependence; Fletcher,
2006; Schmidt et al., 2015), and increased risks of predation and
parasitism (Robinson et al., 1995). The amount of GE plantation
development that can take place at the landscape level before it
compromises gamma diversity (i.e. the regional species pool:
Ricklefs, 1987), ecosystem functioning and population viability of
native species depends on the dispersal capacity of organisms to
recolonize managed stands. In turn, this will be a function of the

spatial configuration of plantations and the degree to which they
impede animal movement (Root & Betts, 2016).

GE plantations as permeable matrix Although reproductively
modified GE plantations may not serve as breeding habitat for
pollen- and seed-dependent animals, for some species the cover
provided by tree canopy may facilitate movement among patches
(Brockerhoff et al., 2008). In such cases, a matrix dominated by
plantations could be preferable to other types of habitat loss that
would occur through urbanization or agricultural development.
We predict that mature forest-associated species are more likely to
benefit from this positive ‘matrix’ effect. Conversely, for species
that preferentially breed and disperse though early seral habitats
(e.g. butterflies and many species of pollinators; Haddad &
Tewksbury, 2005), closed-canopy GE plantations are more likely
to constitute a barrier, thereby potentially reducing population
viability.

GE plantations as ecological traps Organisms regularly depend
on environmental cues to make habitat selection decisions.
However, in anthropogenically altered environments, previously
reliable cuesmay becomemaladaptive. In such cases, organisms can
become ‘trapped’ by their behavioral responses, resulting in
reduced survival or reproduction (Schlaepfer et al., 2002). Given
the novelty ofGE reproductivemodification, and the lack of studies
about how organisms that feed on reproductive structures use them
as cues, little is known about the degree that such plantations could
constitute ecological traps. If native species select habitat based on
structural cues associatedwith the forest rather than direct cues such
as the pollen or seeds (as food), the potential exists for GE
plantations to act as traps. In such cases, even small amounts of GE
plantations could potentially have negative impacts on populations
because individuals could be drawn from otherwise appropriate
habitat toward suboptimal locations with reduced fitness. Simu-
lated population models (Schumaker et al., 2004) could assist in
understanding the degree of ‘trap’ effect required in relation to
other demographic parameters before substantial risks to popula-
tions are encountered. However, the biological knowledge on
which such models must be built is presently lacking, in no small
part due to the rarity of all types of GE plantations, reproduction-
modified or otherwise (c. 0.00033% of plantation area: less than c.
500 ha, mostly poplars in China (Walter et al., 2010; H€aggman
et al., 2013; Vettori et al., 2016)), in relation to a global plantation
estate of c. 150–200million ha (of total forest area of c. 4 billion ha;
R. Sedjo, pers. comm., May 18, 2016).

Role of pollen in nutrient cycling Enriched with vegetation
growth-limiting elements such as nitrogen, tree pollenmay provide
a significant supplement of macronutrients to forest ecosystems
early in the growing season. For example, Perez-Moreno & Read
(2001) found that a species of ectomychorrhizal fungus (Paxillus
involutus) was able to consume nitrogen and phosphorus from the
extensive pollen deposited by a member of our focal genera
(P. sylvestris) and return a significant proportion of these nutrients
to its host tree Betula pendula. They demonstrated experimentally
that Betula individuals grown with pollen and mychorrizal
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symbionts contained significantly more nitrogen and phosphorus
than those grown without pollen, resulting in increased seedling
growth. However, compared to litterfall, overall nutrient inputs
into forest ecosystems via pollen appear to be small. For example,
Cho et al. (2003) found pollen deposition in temperate pine forests
inKorea to be c. 0.3% that of total litterfall byweight, with nitrogen
inputs corresponding to 1% and 6% of total nitrogen and
phosphorus, respectively. Pine pollen may nonetheless be a
significant source of nutrients during the critical early growing
period. In single-species plantations of Pinus and other wind-
pollinated species, however, such inputs would likely be the same or
less than the loss of nutrients from pollen release.

Tree pollen may provide an important source of nutrients for
freshwater ecosystems. Graham et al. (2006), for example, found
that Pinus pollen enhanced productivity in a small (0.27 km2)
boreal lake system by increasing phosphorus and carbon availabil-
ity. FromMay to June, an estimated 7 kg km�2 of pollen (0.5% P
by weight) was deposited onto the lake, providing a potential
subsidy of 10 kg of phosphorus. The increased levels of phosphorus
(and correlated increases of carbon) were associatedwith significant
increases in diatom, phytoplankton and zooplankton abundance
around the time of pollen deposition.

Role of pollen in regional climates Changes in the abundance and
types of tree pollen may significantly influence local and regional
climate. Bioaerosols, including pollen grains present in large
quantities, can alter cloud properties and influence atmospheric
radiative forcing by scattering and absorbing solar and planetary
radiation (Bonan, 2008; Despr�es et al., 2012). Pollen also has been
shown to be an efficient source of cloud condensation nuclei (e.g.
Pope, 2010; Steiner et al., 2015), but its relative importance to
cloud formation is unclear given that it is often at lowdensity and of
short duration compared to other natural and anthropogenic
sources of such nuclei. As with most other reproductive

modifications, the climatic impacts of modified pollen production
would be highly scale- and context-dependent.

5. Social dimensions

Support and opposition for GE In addition to biological
considerations, societal responses toward GE and related tech-
nologies can impact their adoption and regulation (e.g. Davison
et al., 1997; Frewer et al., 2003, 2004; Costa-Font et al., 2008;
Gupta et al., 2011; Lucht, 2015). Although specific studies on
societal responses to reproductive modification in trees are scarce,
research associated with more general use of GE in trees provides
insight into whether people might reject or accept reproductive
modification.

Concepts including attitudes, risk, knowledge and trust are
related to acceptance ofGE (Fig. 5). Attitudes involve evaluating an
entity such asGEwith some degree of favor or disfavor (Fishbein&
Ajzen, 2010). Compared to agriculture, attitudes toward GE in
trees and forests are less understood and there are only a few studies
of attitudes about reproductive modification in forest trees (Strauss
et al., 2009). In a sample of students in multiple countries (mostly
European), Kazana et al. (2015) found generally positive attitudes
toward using GE of trees in plantations, but not in wild natural
forests. In a sample of the public in theUSA,Needham et al. (2015)
found that attitudes were less favorable toward using GE in wild
forests compared to other forestry techniques (e.g. breeding,
planting, thinning), but GE was more favorable for addressing tree
diseases (e.g. chestnut blight) compared to other forest impacts (e.g.
climate change, increasing growth for timber; Fig. 6). GE also was
more acceptable in native species compared to adding genes from
exotics or distantly related species (Needham et al., 2015).
Attitudes towardGEalso vary between experts (e.g. forest scientists,
forestry agencies) and the public, with experts often having more
favorable attitudes (Małyska et al., 2014; Porth & El-Kassaby,
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2014). Needham et al. (2015) found that, compared to the public,
experts (scientists, agencies, companies and nongovernmental
organizations involved in forest issues) had more positive attitudes
toward GE in forestry (Fig. 6).

Risks andbenefits ofGE Most research onpublic responses toGE
has focused on risk perceptions, which are subjective evaluations of
threats posed by hazards (Slovic, 2000). In general, people express
concern and skepticism toward new and unknown hazards that are
not well-understood (Finucane & Holup, 2005; Rastogi Verma,
2013; Blancke et al., 2015). Given its novelty, reproductive
modification in trees is likely to be associated with risk factors
such as newness, harm, dread, unnaturalness and unfamiliarity
(Slovic, 2000; Sj€oberg, 2004). Research examining public
responses toward approaches for addressing forest impacts, for
example, showed that biotechnologies (e.g. GE) were perceived as
riskier than more well-known and familiar approaches such as
planting and thinning (Needham et al., 2015). Interestingly, cross-
breeding with related species (e.g. American chestnut with non-
native Asian chestnut) was considered riskier than transgenic
approaches (i.e. inserting genes from unrelated species such as from
breadwheat to the American chestnut), suggesting that perceptions
of naturalness or familiarity may elicit different concerns because
Asian chestnut species, although more closely related to the
American chestnut than wheat, are not as familiar to the public as
wheat (i.e. source of bread). Conversely, Kronenberger et al. (2014)
compared perceptions toward various GE applications and found
more concern when interspecies boundaries were crossed (‘trans-
genics’).

Sj€oberg (2004) identified interfering with nature and severity of
consequences as two of the most important dimensions of risk
perceptions related to GE. Reproductive modification of forest
trees might be viewed similarly, especially given the potential
biodiversity impacts outlined earlier. Reproductive modification

may be viewed as particularly unnatural because it represents a
fundamental change to the natural process of procreation. This
viewpoint has been emphasized by monikers such as ‘terminator
genes’ in activism campaigns against reproductive modification
technologies and their potential impacts on ownership of these
technologies (Lombardo, 2014).

There have been only a few studies examining perceived risks
associated with GE in trees. Tsourgiannis et al. (2016) compared
consumer behaviors associated with GE paper products, woody
biomass energy products and other wood products, and found that
public safety issues and environmental impacts were among the
largest concerns. Kazana et al. (2015, 2016) examined perceptions
toward transgenic forest plantations and found that potential for
gene escape causing contamination of wild forests (i.e. gene flow
between transgenic plantation trees and wild trees) was the greatest
perceived risk. Other concerns included susceptibility to disease
from lignin content modification and impacts from higher
herbicide inputs (i.e. from use of herbicide resistance traits).
Lorentz &Minogue (2015) examined risks of eucalypt plantations
and also found invasion potential and associated negative impacts
on natural forests as primary concerns. These findings are
consistent with Friedman & Foster (1997) who surveyed forest
agency employees and found that loss of adaptation and genetic
diversity, and changes in ecosystem components, were the largest
perceived risks toward artificial regeneration in trees. Likewise,
Needham et al. (2015) found thatmembers of the public weremost
likely to agree that changing existing genes in trees and adding
transgenes (from wheat or other distant species) will change the
genetics of wild or native trees and cause long-term negative
impacts that are currently unknown. Gene-flow risks, however,
could be mitigated or avoided by the genetic containment
mechanisms that are the focus of this paper. Thus, information
and education about this new capability might affect risk
perceptions.

Most positive
attitudes

Most negative
attitudes

2

1

–1

–2

0

Growth for
harvest

Climate
change

Chestnut
blight

Growth for
harvest

Climate
change

Chestnut
blight

Growth for
harvest

Climate
change

Chestnut
blight

Traditional forest management
(e.g. planting, thinning)

Tree breeding Genetic modification

Impact:

Intervention:

Public
Experts

Fig. 6 Public andexpertattitudes to foresthealth interventions in theUSA.Survey results ofpublic (n = 278)andexpert (n = 195; scientists, agencies, companies
and nongovernmental organizations involved in forest issues) attitudes toward using different interventions for addressing various forest health impacts
(Needham et al., 2015). Attitudes represent a composite indexmeasuredwith four items on semantic differential scales (bad – good, foolish –wise, harmful –
beneficial, disagree – agree;Cronbach’s alpha reliability = 0.89–0.97). Themiddle of eachbubble represents the indexmeanon the vertical scale. The size of the
bubble represents the Potential for Conflict Index (PCI2; Vaske et al., 2010), where large bubbles (PCI2 = 1) represent the least amount of consensus and
greatest potential for conflict, and small bubbles (PCI2 = 0) represent the greatest amount of consensus and least potential for conflict.

� 2017 The Authors

New Phytologist� 2017 New Phytologist Trust
New Phytologist (2017) 213: 1000–1021

www.newphytologist.com

New
Phytologist Tansley review Review 1013



Although risk perceptions dominate the literature, acceptance of
reproductive modification also may be related to the extent that
people view these applications as beneficial (e.g. high growth rates,
control invasive species). Kazana et al. (2015, 2016) investigated
perceptions of students (mostly European) toward GE trees in
plantations and found that respondents perceived several benefits,
including reductions in pesticide inputs, restoration of contami-
nated soils and higher tree productivity. These benefits, however,
may differ based on the scale of production (e.g. plantation owners
vs smaller community forests).

Knowledge and trust associated with GE Given the complexity
of reproductive modification, most people are likely to be
uninformed and lack knowledge about this topic. Yet, knowledge
and awareness are often related to positive attitudes and acceptance
of GE (James, 2004; Brossard & Nisbet, 2007; Huffman et al.,
2007; Connor & Siegrist, 2010). In the context of transgenic trees,
Kazana et al. (2015) examined self-assessed knowledge and found
that over 60% of students (mostly European) said they understood
the meaning of transgenic trees and were willing to purchase GE
products. However, fewer than half were aware of whether these
trees could be deployed in plantation forestry (e.g. grown
commercially, sold on the market). The investigators also believed
there to be ‘a serious perceived lack of knowledge about potential
benefits and risks of the cultivation of transgenic forest trees’
(Kazana et al., 2015).

Given the technical nature of reproductive modification and
likelihood that public knowledge about this topic is low, trust in
knowledgeable experts (e.g. forest scientists, agencies) is an
important consideration for understanding perceptions and
acceptance. Trust is the willingness to rely on those responsible
for making decisions or taking actions affecting public wellbeing
(Siegrist, 2000). The public relies on trusted sources (e.g. scientists,
agencies) to assess complex and unknown issues, and greater trust
generally is associated with lower perceived risks, higher perceived
benefits, more positive attitudes and higher acceptance (Siegrist,
2000; Siegrist & Cvetkovich, 2000). Sources such as agencies,
companies and interest groups that are trusted by some people also
can use information campaigns to influence perceptions and
persuade people to support or oppose GE in various contexts (e.g.
on private vs public land, plantations vs wild forests).

III. Synthesis

Although reproductivemodification usingGEmay have benefits for
productivity or containmentof exotic species on its own,weconsider
that its primary use will be to facilitate the use of GE for other traits
that would increase productivity, reduce losses to stressors, or
improvewood-processing efficiency.Thus, an important question is
whether benefits of GE are sufficient to offset the added costs to
breeding of having sterile or partly sterile trees, and if economic costs
of technology, regulatory approval and market limitations are
sufficient to justify use of GE in general and reproductive
modification in particular. Technology costs are considerable
barriers, as many species and genotypes are difficult and costly to
transform under present technology, further emphasizing the need

for large benefits to justify GE. However, most published studies of
the benefits of GE have only been of small-scale field studies of a few
genotypes under highly controlled conditions, and the strong
market-based preclusions to field studies make it unlikely there will
be significant new, large-scale public research in the near future
(Strauss et al., 2015). GE, therefore, is likely to remain very limited
in scale, potentially enabling considerable research on the ecological
impacts of reproductive modification and other GE traits before
their possible large-scale use.

1. Land sharing vs sparing

Conservation biologists are increasingly debating the benefits of
land sparing (high-yielding agriculture on small land area) or land
sharing (low-yielding wildlife-friendly agriculture covering more
land) (Kremen, 2015; Phalan et al., 2016). GE tree plantations
have the potential to provide considerable production benefits, and
such innovations are akin to developments that have occurred since
the beginning of the agricultural revolution, which enabled high
levels of food production on small land areas. However, those
innovations resulted in large changes to the genetic composition of
wild relatives of crops in many areas, as well as large reductions of
general biological and genetic diversity within what became farms;
similar potential changes via GE appear to be less acceptable today,
presumably due to it being viewed as a more artificial process or the
lack of knowledge on how prior innovations arose and have
benefitted humanity. Central to the debate about whether GE
plantations will provide indirect conservation benefits is whether
growingmore trees per unit area will ultimately result in more land
set aside for conservation. Interestingly, there appears to be only a
weak tendency for increased crop productivity to translate into
higher rates of nature conservation in agricultural systems (Ewers
et al., 2009). Improved crop-growing efficiencies likely decrease per
unit production costs, which could boost demand and provide
further incentives for agricultural expansion into previously
undeveloped areas. Thus, intensification needs to be coupled with
‘strong governance’ or zoning that requires parallel land conser-
vation efforts (Kremen, 2015). Zoning approaches are not new to
forest management. Seymour et al. (1999) proposed ‘triad’
methods where a forested land base is divided into three zones:
intensively managed, extensively managed and protected areas.
Several modeling exercises have explored the ‘optimal’ relative
proportions of these zones (e.g. MacLean et al., 2009; Ward &
Erdle, 2015), but clearly such decisions will depend greatly on the
forest type and biodiversity goals under consideration, as well as the
relevant political, social and economic contexts.

With respect to GE plantations, optimal amounts of different
management types will depend greatly on the amount and
configuration of habitat required by native species, as well as
whether they are capable ofmoving through and/or breeding inGE
plantations with reproductive modification. In addition, the large
structural and species changes within the intensively modified
plantation systems where GE is likely to be most used are, in
general, already complete or underway, and have already had large
impacts on reproductive resources –with or without GE added. To
the extent that such systems are already part of intentional or
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unintentional ‘triad’ systems to support biodiversity will to a large
extent determine whether the added impacts of reproductive or
other GE modifications are judged to have significant additional
biological impacts. Such ‘zoning’ systems are commonly in place in
many areas due to government controls on land uses or market-
based controls such as from forest certification systems.

2. How should the Precautionary Principle be applied?

At first glance, following the ‘Precautionary Principle’ to
biodiversity conservation would seem to necessarily require
limited implementation of GE plantations, including those with
modified reproduction. However, if this technology results in
reduced land area required for wood production, or increased
economic efficiency with spin-off benefits for society and
environment – as has been argued forest plantations have done
in many places, and that field trial experience with GE trees
suggest could likely be delivered (discussed above) – application of
the Precautionary Principle is by no means straightforward. As
demand for wood products continues to expand, the risk of not
using GE may come in form of increased rates of harvest in
primary forest, conversion of native forests into non-GE planta-
tions, and increased impacts to wild and planted forests from
climate change-associated abiotic and biotic stressors. Thus failing
to develop GE options could be viewed as being in opposition to
the Precautionary Principle (Strauss, 2015). It is therefore critical
that future policy decisions on GE be informed by the full suite of
trade-offs between traditional forestry practices and implementa-
tion of GE plantations. Understanding the trade-offs, of course,
requires continued research, both of GE benefits and biodiversity
impacts. Unfortunately, both types of research have become
difficult as a result of regulation and market obstacles (primarily
forest certification systems) to field plantings (Strauss et al., 2015).
This preclusion is unfortunate as certification systems, such as
PEFC, point to a lack of adequate research on GE trees as a reason
for their exclusion: ‘. . . as the scientific evidence of potential
benefits and dangers of genetically modified organisms (GMOs)
and its impact on biodiversity remains insufficient and the society
has not completed its debate, the PEFC General Assembly has
determined that GMO cannot be considered as part of PEFC
certified material’ (PEFC International, 2016). A critique of the
Forest Stewardship Council’s GE policy, which was the first to
ban all planted GE trees with no exemption for research, was first
published in 2001 (Strauss et al., 2001).

IV. Research priorities

There are a number of research avenues to improve understanding
of the possible paths and impacts of reproductive modification in
plantation trees. A few of the highest priority needs are briefly
discussed below. A full list is provided in Notes S3.

1. GE reproductive modification

Both the science and technology underlying GE forestry is in its
infancy; basic genetic and genomic science on which GE is based

continue to expand rapidly. Perhaps the most promising path to
new and more effective methods for reproductive modification is
through direct gene editing, such as by the CRISPR-Cas system,
which can be used for mutating genes required for male and/or
female reproduction, and can be reversed if needed for further
breeding. Such mutations should be highly if not perfectly stable,
and after initial research to establish efficacy, can be identified and
selected (based on rapid DNA analysis) years before natural
flowering occurs (i.e. as soon as GE shoots are produced in the
laboratory). Trees with desired changes can undergo accelerated
flowering studies of their effects in the laboratory (e.g. using FT
gene overexpression technology; Klocko et al., 2014) followed by
field studies of their impacts on reproductive and vegetative
development. These studies should test for possible off-target
effects and instability, improve delivery and removal methods, and
monitor for pleiotropic effects on tree growth and development.
Among the target genes should be those that are active late in
reproduction, such as those required only during pollen germina-
tion and embryo development. In theory, knock-outs of the latter
types may produce flowers, and even fruits and seeds, that can serve
as normal resources for organisms that feed on them.

2. Biodiversity

Our literature searches have revealed an absence of studies directly
addressing the effects of reproductive modification on plantation
biodiversity. Thus, the most urgent need is for field sampling
and experimental perturbations to analyze the extent of use, and
dependence of plantation biota, on reproductive structures. This
knowledge is needed for informing the design of hypothesis-driven
stand and landscape-level experiments, and models of what
landscape impacts might be and how they could be mitigated. It
is also needed to help interpret the biological and social significance,
and trade-offs, associated with reproductive modification com-
pared to the many other human impacts on biological diversity. By
understanding effects on biodiversity, this information also will
provide insight into other ecosystem services that may be altered.
Given there are so fewGEplantations established around the world
– and no species commercialized with reproductive modification –
there appears to be ample time for surveys and experiments to
informmanagement should social and political conditions become
conducive to wider use of GE plantations.

3. Social dimensions

If reproductive modification is to be used for managing gene flow
from GE and exotic plantations, it will be essential to understand
what drives public attitudes and perceptions of benefits and risks. It
also will be important to understand how reproductive modifica-
tion is perceived by different stakeholders (e.g. public, experts,
NGOs), as gene flow is itself a major concern voiced by opponents
ofGE in forestry. An important element of acceptance is likely to be
familiarity. Given scientific uncertainty around reproductive
modification, fear of unknown potential impacts will likely
continue until science can shed light on these impacts and
effectively communicate them in the context of other impacts on
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biodiversity (e.g. from agriculture, urbanization, plantations) and
similar types of common technological interventions (e.g. neuter-
ing pets, birth control, seedless fruits, GE foods). Investigating
benefits and costs of GE in forest plantations also will require
ethical and political considerations such as how much biotechnol-
ogy is needed, who makes final decisions and who takes respon-
sibility.

V. Conclusion

Existing and developing genetic engineering (GE) technologies
appear to be able to provide solutions to the problem of gene flow
from GE and exotic plantation forests. However, there is little
biological or social science research to inform about its impacts, the
scale(s) at which it may become a concern, its significance in
relation to other major sources of biodiversity perturbations, or the
options for mitigation in the diverse species and coupled forest–
human ecosystems where they might be applied. There are
numerous opportunities for research to improve and extend GE
technologies, and to fill gaps in knowledge of biodiversity impacts,
but constraints in the form of market and regulatory restrictions to
field research – and associated disinvestments in research from
companies and governments – may make it difficult to fill these
gaps in the foreseeable future.
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