

Exploring the Agrobacterium genome to facilitate *in planta* transformation

> Greg Goralogia and Steve Strauss OSU College of Forestry

- 1. Perspectives & experimental system
- 2. Hopes and approaches for tissue culture-free "in planta" transformation
- 3. Surveying wild Agrobacterium strains for novel morphogenic capability

Regeneration & transformation continue to be major limiting factors for gene editing & engineering in plants, and especially trees

- Species and genotypic differences often dramatic
- Slow, costly, complex customization efforts usually needed
- On top of often large social/regulatory constraints, often a "deal breaker"

Our experimental system features

- Woody (forest) trees
- Elite clones, not seed-derived
- High physiological diversity
 - Growth environment, age, explant type and source
- Great tissue sample heterogeneity
- Common necrotic responses
- Very high genetic diversity of forest trees

Populus trichocarpa

Eucalyptus grandis x urophylla

- 1. Perspectives & experimental system
- 2. Hopes and approaches for tissue culture-free "in planta" transformation
- 3. Surveying wild Agrobacterium strains for novel morphogenic capability

In planta transformation of great interest

- Lower cost in media, facilities?
- Reduced customization efforts?
- Less specialized personnel could do it?
- Less genotype-dependent?
- DEV genes can help?

A. tumefaciens hormone genes promote regeneration useful for *in planta* methods?

iaa/ipt genes form a positive feedback loop to reinforce undifferentiated cell growth *iaaH/M and ipt* genes from *Agrobacterium* were effective *in planta* inducers of transgenic cells in diverse genotypes

Can we find more useful, developmentally flexible Agro genes?

We cloned out the DEV genes from our resurrected clone in deep freeze

Agro transformed tissues promoted regeneration of shoots

Mixed co-transformation with *Agrobacterium* genes

No hormones to induce regeneration

Only spec selection

82.139 DEV genes spur the regeneration of trait vector cells

82.139 altruistic transformation was superior to routine hormone-based indirect transformation

Which genes are most important for non-cell autonomous shoot promotion?

iaa/ipt genes alone did not support high rates of altruistic shoot induction

Otten 2021, Plant Mol Biol

- 1. Perspectives & experimental system
- 2. Hopes and approaches for tissue culture-free "in planta" transformation
- 3. Surveying wild Agrobacterium strains for novel morphogenic capability

Are there other useful DEV genes? Agro diversity hardly studied

RESEARCH ARTICLE SUMMARY

PLASMID EVOLUTION

Unexpected conservation and global transmission of agrobacterial virulence plasmids

Alexandra J. Weisberg, Edward W. Davis II, Javier Tabima, Michael S. Belcher, Marilyn Miller, Chih-Horng Kuo, Joyce E. Loper, Niklaus J. Grünwald, Melodie L. Putnam, Jeff H. Chang*

Larry Moore Al

Alexandra Jeff Weisberg (BPP) Chang (BPP)

Disarmed lab strain

"Shooty" relative of 82.139

What does the Ti/Ri plasmid diversity look like?

Weisberg et al. 2020 Science

What about chromosomal diversity?

.....Three independent chromosomal lineages To see transgenic tissues and try a variety of selection systems, we adopted a universal binary vector to place into wild strains

- Selected 10 strains with widely varied Ti/Ri lineages, gene content, chromosomal background
- Testing *in vitro* and *in planta* in several species

Kalanchoe as a simple system to assess strain characteristics

- Rapid callus/gall development
- Easy to propagate
- Simple to wound and apply Agro
- Flat surface for imaging (hyperspectral / machine vision)

In kalanchoe TG tissue tended to be discrete amongst regenerating non-TG tissue

How about woody plants like poplar?

How should we approach *in planta* transformation?

In planta methods are still changing rapidly, require a different way of thinking about transformation

Populus tremula x alba 717-1B4

Apical decapitation

Axillary bud injection

We transformed two poplar genotypes with three treatments using apical decapitation

Genotypes:

- *Populus tremula x alba* 717-1B4 transformable hybrid aspen
- *Populus trichocarpa* SKWB-22 ("T10") more challenging

Treatments:

- 1. No selection or hormones, moisture control with inverted epp. Tube
- 2. Selection only 1/week (100mg/L kanamycin)
- 3. Selection + weak cytokinin (tests whether galls are developmentally labile)

No selection or hormones, in 717 hybrid aspen

Kanamycin treatment in 717 hybrid aspen

kanamycin + TDZ treatment in 717 hybrid aspen

No selection or hormones in T10 black cottonwood

Kanamycin treatment in T10 black cottonwood

Genotypes and existing kill curves for antibiotic often need to be re-worked with *in planta* inoculation

kanamycin + TDZ treatment in T10 black cottonwood

How does *in vitro* differ from *in planta* when transforming with wild strains?

Pilot tests in hop showed strong variance in delivery and regeneration among strains

Humulus lupulus cv. "Cascade"

Chris Willig, OSU

Domains of transgenic vs. non-transgenic regenerating tissue often distinct among strains

10 mg/L spec

Humulus lupulus cv. "Cascade"

In vitro testing in poplar showed a wide range regeneration outcomes, TG vs. non-TG domains

- Transformable genotype 717-1B4 *P. tremula x alba*
- No selection in this experiment

RUBY regenerating callus or hairy roots varied widely amongst strains in poplar

Ratio of explants with RUBY tissue

Ti strains = green bars, Ri strains = blue bars

Transforming greenhouse plants is tough, but we are learning!

• Things we take for granted like *Agrobacterium* preparation methods, selection strength, media composition all need to be re-calibrated *in planta*

 So far our wild strains exhibit potent morphogenic outcomes *in vitro*, highlighting many for further study

Summary

- Agro genes have impressive morphogenic potential for transformation
- Many Agro genes are unexplored mechanistically in the ways they change plant development
- Binary vectors using RUBY are effective tools to assess strain characteristics
- Agro strains have wide variability in transgene delivery and regeneration outcomes on different hosts

Going forward

- Agrobacterium diversity, both in terms of transgene delivery and regeneration outcomes warrants further study
- Screening population of sequenced strains will highlight unexplored T-DNA genes for further mechanistic study or careful combination
- In planta, tissue culture-free systems have many technical challenges in vegetatively propagated crops –co-transformation with Agro genes could be a path forward
- Strain "domestication" a priority in cases where lab strains (C58/Ach5) are inadequate for the desired plant species

Thanks to our funders and collaborators

United States Department of Agriculture

National Institute of Food and Agriculture

GREAT TREES Consortium

Suzano, SAPPI, Arauco, Klabin, SweTree, Corteva Agriscience

Thank you to all the people in the lab who contributed!

Michael Gordon PhD Candidate, HIGS

Michael Nagle Postdoc: GWAS, Phenomic systems

Chris Willig Postdoc: Hop transformation

Tanner Whiting Undergraduate Hop transformation

Anthony Marroquin Greenhouse Manager

Xavier Tacker Undergraduate Researcher