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The abilities of plant biologists and breeders to characterize the genetic basis of physiological traits are limited by their abilities to
obtain quantitative data representing precise details of trait variation, and particularly to collect this data at a high-throughput
scale with low cost. Although deep learning methods have demonstrated unprecedented potential to automate plant
phenotyping, these methods commonly rely on large training sets that can be time-consuming to generate. Intelligent
algorithms have therefore been proposed to enhance the productivity of these annotations and reduce human efforts. We
propose a high-throughput phenotyping system which features a Graphical User Interface (GUI) and a novel interactive
segmentation algorithm: Semantic-Guided Interactive Object Segmentation (SGIOS). By providing a user-friendly interface and
intelligent assistance with annotation, this system offers potential to streamline and accelerate the generation of training sets,
reducing the effort required by the user. Our evaluation shows that our proposed SGIOS model requires fewer user inputs
compared to the state-of-art models for interactive segmentation. As a case study of the use of the GUI applied for genetic
discovery in plants, we present an example of results from a preliminary genome-wide association study (GWAS) of in planta
regeneration in Populus trichocarpa (poplar). We further demonstrate that the inclusion of a semantic prior map with SGIOS
can accelerate the training process for future GWAS, using a sample of a dataset extracted from a poplar GWAS of in vitro
regeneration. The capabilities of our phenotyping system surpass those of unassisted humans to rapidly and precisely
phenotype our traits of interest. The scalability of this system enables large-scale phenomic screens that would otherwise be
time-prohibitive, thereby providing increased power for GWAS, mutant screens, and other studies relying on large sample
sizes to characterize the genetic basis of trait variation. Our user-friendly system can be used by researchers lacking a
computational background, thus helping to democratize the use of deep segmentation as a tool for plant phenotyping.

1. Introduction

Advances in high-throughput genome sequencing and compu-
tation have enabled the investigation of genomic variation
within large populations [1–4]. In genome-wide association
studies (GWAS), statistical models are used to model relation-
ships between genotypes and phenotypes. When significant
relationships are located, these can lead to the discovery of
genetic markers and/or genes responsible for the phenotype of
interest [3, 5]. However, genomic sequencing capacity and pre-
cision have outstripped the capability to produce high-quality
phenomic data at scale. Phenotyping often requires individual

inspection of large numbers of samples, with statistical power
depending on the sample size; for instance, as the sample size
of a GWAS or mutant screen increases, the representation of
rare genetic markers increases along with the power of models
to discover them [6–8]. Sample size can be limited by the time
cost of phenotyping, which is affected by challenges in both
the accuracy and precision of measuring complex phenotypes
as are common in studies of plant growth and development
[9, 10]. The constraint of sample size therefore limits the
insights that can be gained from these studies. Furthermore,
phenotyping by humans commonly involves summarization
of phenotypes in a manner that limits detail and subjects data
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to potential biases of individuals performing phenotyping. For
example, each sample may be given an ordinal or binary “score”
representing a general summary of their complex trait or traits,
which would be difficult to quantitatively measure in a simple
and objective manner. For studies similar to our case example
involving plant regeneration, common traits studied include
callus size and quality [11], rates of callus differentiation into
shoot [12] and the numbers of shoots produced [13]. These
are very difficult to accurately measure without an annotation
and imaging system, and their measurement will often compro-
mise the required sterility of in vitro cultures during sequential
analyses of growth. Comparable levels of complexity can be
seen in populations of growing cancerous cells imaged with
microscopy [14, 15].

While deep learning has demonstrated unprecedented
abilities for high-throughput and precise phenotyping of
complex plant traits including plant stress, disease, and
development of specific tissues, these methods generally
require large training sets that are labor-intensive to generate
[16–19]. The amount of labor needed for phenotyping can
be greatly reduced by supervised deep learning, although
not eliminated altogether due to an inherent reliance on
training data, which requires manual inspection and labeling
of some number of samples.

Multiple approaches have been employed to alleviate the
need for large training sets or to reduce the time cost of gen-
erating them. The number of training samples required for
desired accuracy can be reduced, for example, by employing
transfer learning. With this ubiquitous approach, users begin
with a model trained for a similar task (often using a gold-
standard training set) and retrain the model using a training
set for their specific task. This re-training process tends to
require relatively few annotated examples, whereas many
more would be needed if the model were not already trained
for a similar task [20]. Additionally, data augmentation
approaches, such as those involving image rotation or other
linear transformations, can be used to produce multiple
training samples from each image [21]. Generation of train-
ing labels is particularly laborious when research designs
require precise segmentation of image boundaries rather
than simple classification of images. In a recent study, deep
segmentation of healthy and cancerous tissues relied on a
training set with precisely drawn lines separating healthy
and cancerous tissue; the labor-intensive task of producing
this training set was crowdsourced among 25 medical doc-
tors and students [22].

As an alternative to manual drawing of segment bound-
aries, several established methods and tools for annotation
depend on drawing of boxes or polygons [23–26], presenting
a challenge for precisely labeling curved edges of objects
such as leaves and other plant tissues. Our system features
a user-friendly web-based annotator tool (IDEAS, Intelligent
DEep Annotator for Segmentation) that applies deep seg-
mentation to detect boundaries of objects given positive
and negative cues by the user and a semantic prior map, thus
enabling rapid and reliable labeling of objects with pixel-
level precision (Figure 1).

Deep learning requires a massive amount of data to train
a model. Generation of large datasets by unassisted humans

may prove time-prohibitive, especially for complex tasks.
The time cost can be mitigated by the use of intelligent
annotation algorithms to simplify image annotation tasks.
Much research has been dedicated to building intelligent
algorithms for automatic image annotation and building
image annotation tools [27]. Nevertheless, these algorithms
fail to predict well for complex structures and require a con-
siderable amount of user effort to correct the incorrect
model predictions. Hence, there is a need for an efficient tool
for image segmentation using an intelligent algorithm that
requires minimal user interaction and can label datasets
belonging to any distribution of data. Our system, IDEAS,
facilitates labeling highly precise curved objects with mini-
mal labor and works well for segmenting previously unseen
classes.

For the backend algorithm used in IDEAS, we propose to
utilize semantic probability maps as a prior that acts as an
additional guide to our interactive object segmentation
model. The availability of strong prior information helps to
guide the neural network in producing accurate boundaries
and reduces the level of user interaction needed in providing
positive and negative markers. Semantic segmentation has
made tremendous progress in the last few years and is now
among the fastest and most mature algorithms in deep
learning. With state-of-the-art architectures such as Dee-
pLab [28], PSPNet [29], and RefineNet [30] delivering
strong performance on challenging benchmarks, obtaining
semantic results for images is no longer difficult. Consider-
ing the potential for transfer learning to reduce the amount
of training data needed, we hypothesize that the user effort
required in providing clicks to guide segmentation can be
reduced if segmentation is guided by a prior generated by
a model trained on a partial dataset.

Leveraging semantic information to guide the main task
has been previously followed in object detection [31, 32],
dense object reconstruction [33] and interactive co-
segmentation [34] tasks. However, to the best of our knowl-
edge, our method is the first to apply this strategy for inter-
active object segmentation. We performed a benchmark
experiment to evaluate the time cost advantage of using a
semantic prior map along with the user click inputs, and
found that use of the semantic prior map provides a substan-
tial improvement over the use of user inputs alone.

The nature of our overall system as a web-based tool
offers advantages for collaborative annotation and system
administration. Multiple users can log into the system online
from personal computers, working on a server with IDEAS
installed and managed centrally by an administrator. Users
benefit from the flexibility of being able to work from any
computer with internet access, while the computationally
intensive task of generating labels is assigned to a GPU on
the server. Furthermore, users without a computational
background benefit from an ability to apply the system with-
out installing and updating software or otherwise interacting
with the command line, as these tasks are handled centrally
by an administrator.

After completion of a training set with IDEAS, a neural
network is trained and used for semantic segmentation of
large numbers of images that could not be practically
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annotated by humans. We use the state-of-the-art PSPNet
architecture [29], notable for a global pyramid pooling mod-
ule that enhances model accuracy. Finally, traits computed
from segmented images provide quantitative measures of
growth of distinct plant tissues. These measures include the
relative areas and counts of specific tissues, thus providing
an array of statistics biologists may choose from to represent
tissue development in downstream statistical models.

2. Materials and Methods

IDEAS (Figure 2) features separate front-end and back-end
components. The front-end, accessible to the user through
a web browser, contains all user-facing, interactive modules.
These modules cooperate with each other to support the
workflow and are implemented through HTML, JavaScript,
and jQuery. On the back-end, the Python Flask web frame-
work is used to receive requests from the front-end and
return the generated object mask for the object being anno-
tated. IDEAS is deployed at https://ideas.eecs.oregonstate.edu
and is accessible to the public.

The development of IDEAS enables the collection of
ground truth segmentation masks, to be used as training
labels, for various types of plant images. A semantic segmen-
tation model can then be trained using the collected annota-
tions to compute masks for large sets of unseen images.
Below, we introduce features of the front-end, back-end,
and auxiliary functions on IDEAS.

2.1. IDEAS: Front-End Interactive Modules. The front-end
interface of IDEAS features seven different modules
(Figure 3):

① Object and Class Panels: Our system allows the user
to customize the identity of objects and the classes they
include. Figure 4(a) shows the unfolded class panel and
object panel. The class panel displays a list of classes to be
annotated. Using the object panel, the user can define objects
and their nested classes by either 1) adding multiple classes
to an object when defining the object on the object panel,
or 2) using the button ‘add to’ on the class panel to add clas-
ses to a specified object one-by-one. The intuitive design of
object and class hierarchy is influenced by applications that
involve analysis of multiple, distinct parts of given objects
(e.g. distinct plant tissues such as callus or shoot, growing
in each individual sample on a petri dish (Figure 4(b))).

② Toolkit: Point-and-click tools for user annotation of
images include: 1) Two types of pens, for drawing positive

and negative strokes inside and outside of a desired segment,
respectively, which are used by the back-end to generate the
object mask; 2) A bounding box tool to specify a local win-
dow around a specific object the user desires to interact with,
accelerating computation time by limiting mask computa-
tion to pixels within the box. An alert is generated recom-
mending the use of this tool when annotating images
larger than 512 × 512; and 3) drop-down menus allowing
the user to select line width for marks drawn and to choose
between manual annotation and a deep algorithm for intel-
ligent boundary detection.

③ Mask Upload: This tool allows the user to upload a
semantic mask to provide prior information to the classifier,
which can reduce the number of user clicks required for
strong performance in our deep interactive model, SGIOS.
If no mask is uploaded, the algorithm utilizes a blank mask
and produces results equivalent to those from interactive
segmentation without a semantic prior map.

④ Canvas: The central editor, implemented as an
HTML5 canvas element, provides a space for the user to
apply tools from the toolkit (rectangle and positive/negative
strokes) on a given image. Zooming functions can be used to
assist in fine-scale drawing or to provide a broad overview of
an image. The user begins interaction with the canvas first
by selecting a nested class for an object of interest (from
the object panel), then draws positive and negative strokes
and clicks the ‘process’ button in the toolkit module. For
quick and efficient labeling, these strokes are usually drawn
as short lines. Each pixel in a stroke is considered an exam-
ple of a pixel inside (positive strokes) or outside (negative
strokes) the segment of interest. The user-provided marks
are sent to the back-end, which detects boundaries and
returns a mask to be superimposed over the segment of
interest in the graphical front-end. This superimposed mask
appears with a white line on boundaries, with inner pixels
visualized with a user-selected level of opacity (set using
the opacity slider), allowing the user to see both masks and
underlying objects. If the mask does not adequately fit the
desired segment, the user can provide additional positive
and negative strokes and again click the ‘process’ button to
generate a new mask.

⑤ History Panel: A history panel is integrated into the
annotator to help the user recognize and correct errors.
Users can view independent steps of annotation in this panel
and correct mistakes with undo and redo functions. The his-
tory panel also provides a ‘clear’ button to erase all opera-
tions and return to the initial state. Three additional

(a) (b) (c)

Figure 1: Annotation of an example image of a poplar stem tip undergoing regeneration: (a) Image to be annotated. (b) Polygon-based
annotation from LabelMe, which was generated using 364 clicks precisely on the boundaries. (c) Annotation from IDEAS, which was
generated based on 25 positive marks and 49 negative marks. This comparison demonstrates how IDEAS can be used to produce highly
precise boundaries for objects with reduced effort.
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buttons allow the user to undo specific toolkit actions. These
include ‘clearPositivePoints’ and ‘clearNegativePoints’ but-
tons to erase all ‘posPen’ and ‘negPen’ marks, as well as a
‘clearRectangle’ button to remove the bounding box set with
the rectangle tool.

⑥ File Gallery: A file gallery is displayed underneath the
canvas, providing an overview of all uploaded images.
Images can be uploaded by two methods: first, through the
image upload prompt seen when logging into IDEAS, or
alternatively, using the ‘addImage’ button to add images as
annotation is ongoing. Using either method, images can be
uploaded either independently or in batches and their

thumbnails are displayed in the file gallery. To switch the
image being annotated in the ‘Canvas’ panel, the user can
simply click the thumbnail of another image. To remove
all uploaded images from the gallery, the user clicks the
‘clear gallery’ button.

⑦ Importing and Exporting: Upon completing annota-
tion for a given image, the user can save the labels (generated
mask) as a PNG image file with labels recorded in any of
three formats: with segments colored by either their class
or object, or both. An example is shown in Figure 4(c)–
4(e). The customized class and object hierarchy information
can be exported as a .txt file and re-imported during later

Figure 2: Screenshot of IDEAS with one annotated image in a web browser.

Figure 3: Front-end modules in IDEAS.
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annotation sessions, a quick and simple means of maintain-
ing consistent settings over the course of an experiment. Fur-
thermore, the user has an option to import or export a .txt file
containing the entire annotation environment, including all
user actions and generated masks. This feature enables the
user to restore the environment to update annotations at a
later time.

2.2. IDEAS: Back-End Deep Interactive Algorithm. When the
user clicks the ‘process’ button, the front-end collects user
inputs including positive and negative strokes, the prior
mask, and the bounding box, along with the image and
any pre-existing labels, and sends this data to the back-
end. The back-end then generates a mask using one of two
algorithms, as selected via the ‘mode’ drop-down menu
under toolkit. In manual mode, the pointer is used to mark
every pixel of the desired segment. Annotating whole images
by this method can be difficult and time-consuming, as the
user is required to draw a label covering the segment of
interest and has no assistance in accurately drawing bound-
aries. Contrarily, the DL-ObjectSelect mode which uses
SGIOS provides a rapid means of automatically segmenting
the selected object when the user provides a small number of
positive and negative strokes. We demonstrate that this lat-
ter method is fast and efficient, minimizing the required

inputs and time commitment from the user. Thus, the man-
ual mode is rarely used in practice.

SGIOS (Semantic-guided Interactive Object Segmen-
tation). Segmentation annotation of images presents a
challenge in that every pixel must be labeled for each
training image, which could be a time-consuming process,
especially in plants where the boundaries usually cannot
be expressed with simple geometric shapes. Intelligent
algorithms are needed to reduce the human effort required
to produce these labels. Here, we propose an interactive
segmentation algorithm utilizing a semantic probability
map as prior information to guide the segmentation while
the user provides inputs of positive and negative clicks.
The use of prior information is a strategy to guide the
deep convolutional network and provide context for the
object of interest, reducing the number of user inputs
required for desired performance.

Figure 5 illustrates the pipeline for computing object
masks after an object of interest is labeled. The image,
user-interaction pairs (positive and negative marks), and
semantic information are used as inputs for a fully convolu-
tional network (FCN), which is trained with the boot-
strapped cross-entropy loss function to predict a binary
mask of the object. On the user interaction guided map, we
calculate the pixel value ux,y at location ðx, yÞ as the

(a)

(b) (c)

(e)(d)

Figure 4: One annotation example: (a) Customized configuration of class and object hierarchy. (b) RGB image. (c-e) RGB images with
superimposed labels for class (c), object (d), and nested object-class (e).
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minimum Euclidean distance between ðx, yÞ and the set of
marks. In other words, given a set of points P = fði, jÞg,
where ði, jÞ is the point location, ux,y =minði,jÞ∈Pði − xÞ2 +
ðj − yÞ2:

Most CNN networks [35] for interactive object selection
are trained non-iteratively, despite the often iterative nature
of refining results with additional clicks by the user. Follow-
ing the iterative training strategy proposed by ITIS [36], we
choose to train our model iteratively. Simulated initial user
clicks are updated with the corrective clicks based on the
mask obtained in the previous iteration, and this informa-
tion is sent to the FCN as an input to predict the refined
mask. Interactive clicks are further simulated until the
desired mask is finally obtained. Below we describe the key
components in training our interactive model, SGIOS, with
simulated user clicks.

(i) Initial click sampling: To make our model flexible
and not depend on the location or the number of
clicks, we randomly sample n positive and m nega-
tive clicks until a total of 20 clicks are placed. To
sample the positive clicks, we begin by identifying
points in the center of the object and randomly
sample a point from these. All positive sampled
points lie on the object of interest and are dstep
away from the previously sampled positive points.
We first sample negative clicks on other objects
close to or touching our object of interest, and the
remaining clicks are sampled around the object.
When the number of negative clicks sampled is
zero, we send a blank mask for the negative clicks
and a positive click encoded mask with clicks only
on the object of interest.

(ii) Iterative click sampling on incorrect prediction: Our
iterative click sampling strategy is similar to that
proposed by ITIS [36], with modifications in the
erroneous region selection and click placement on
each iteration. Below, we describe the steps for gen-
erating the correction clicks while training:

(a) The output prediction from the last step is
compared with the ground truth mask for the
object of interest, and the incorrect pixels are

grouped into multiple clusters using the con-
nected components.

(b) Instead of selecting the largest cluster on each
iteration as is done with ITIS [36], we sample
R regions where the clicks should be placed
from the distribution of all regions. The distri-
bution of regions is weighted by the probability
proportional to the number of pixels in each
region.

(c) K points are randomly sampled from the R
selected erroneous regions, where K>=R and
the total number of clicks is thresholded to 20.

(d) The selected clicks are encoded similarly as the
initial clicks, using a Gaussian distribution. An
example of iterative click sampling is shown in
Figure 6.

(iii) Semantic Prior Maps: The semantic prior maps
were generated from an offline semantic segmenta-
tion model. For example, in our case study, we used
a Deeplabv3+ [37] model trained on plant images
for segmenting a image into three categories (stem,
callus, and shoot) along with background. The
multi-channel output before the final sigmoid layer
in the semantic segmentation model was output as
the semantic probability maps featuring one chan-
nel for each class. Since the semantic prior maps
are floating-point numbers on each pixel, we saved
them in TIFF format. As a note, the users can use
a pre-trained semantic model that was trained for
the categories of interest to generate these prior
maps. IDEAS does not support online semantic
model training or generating TIFF files.

(a) The appropriate semantic channel is selected
based on the semantic category of the pixels of
positive clicks. With the assumption that the
user will always place at least one positive click
on the object of interest, we obtain the semantic
probability map corresponding to the category
with maximal probability at the given pixel
locations. Using this approach, we can adapt

b) Positive and negative clicks
overlayed on RGB image

Fully convolutional
network

a) System
architectureSemantic

segmentation
mask

RGB image +
interactive maps

RGB image

Positive
clicks

Negative
clicks

. . . .

Figure 5: Pipeline of the Semantic-Guided Interactive Object Segmentation Algorithm.
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to semantic segmentation tasks with any num-
ber of categories. With inclusion of the
semantic prior map, we are often able to
obtain adequate results for interactive object
segmentation with only a single positive click
on the object.

(b) When no semantic prior map is provided, inter-
active object segmentation proceeds without
this information, using a blank mask. This
approach is most appropriate when producing
a training set for an initial model, which can
be used for producing the semantic prior maps
for the remaining dataset.

2.3. IDEAS: Auxiliary Functions. Beyond the fundamental
workflow introduced above, we emphasize the following fea-
tures in IDEAS to enhance precision, usability and annota-
tion speed:

(i) Positive/Negative Strokes: We incorporated a fea-
ture to allow the user to provide groups of positive
or negative markers as strokes as an alternative to
providing single markers one click at a time. Rather
than only clicking to provide individual points as
positive and negative marks, the user can move
the mouse while holding the click, drawing strokes
to mark multiple pixels along a path. The ability of
the user to quickly provide many marks is valuable
because segmentation accuracy depends on the
number of marks drawn.

(ii) Quality improvement by adding more ‘posPen’ or
‘negPen’ strokes: We enhanced the semantic-
guided interactive object segmentation by adding a
feature that enables the user to improve the
returned object mask by adding additional positive
and negative strokes and again pressing the ‘process’
button. This 'refinement' process is integrated into
IDEAS. As shown in Figure 7, the accuracy of object
mask boundaries improves as additional positive/
negative strokes are given by the user. This provides
an easy and robust means for the user to produce
annotations with desired boundaries precisely
labeled.

(iii) Lock/Unlock the labeled objects: The user can lock
or unlock each single labeled nested class for an
object by double-clicking it on the object panel. As
Figure 8 shows, the labeled objects cannot be mod-
ified while locked. Unlocking is necessary before the
given object can be edited again. This locking func-
tion allows the user to annotate objects without
affecting previously drawn labels of other objects.
This is particularly useful when small objects are
annotated prior to larger, nearby objects. The
former objects can be locked as additional objects
are labeled, then unlocked and edited again at a
later time.

3. Results

In this section, we first showed the efficiency and accuracy of
SGIOS on the Pascal VOC [38] dataset and the Computer
Vision Problems in Plants Phenotyping (CVPPP) leaf seg-
mentation challenge (LSC) dataset [39, 40]. Then we showed
the performance of IDEAS by conducting a preliminary
study with the help of an expert biologist, who helped per-
form annotations using our GUI. Finally, we presented an
application of IDEAS for high-throughput phenotyping as
part of a GWAS to identify genes that control regeneration
in poplar.

3.1. Semantic-Guided Interactive Object Segmentation.
Implementation detail. We used the model architecture
proposed by ITIS [36] with the modification of adding a
semantic probability map input. To benchmark this
approach, we simulated the user clicks in training using
the previously described strategies for initial click sampling
and iterative click sampling on incorrect predictions.

Training SGIOS on the augmented Pascal VOC data-
set. We used the augmented Pascal VOC [38] dataset with
additional annotation from the Semantic Boundaries Data-
set (SBD) [41], which consists a total of 10,582 images for
around 25,000 objects belonging to 20 different classes in
the training subset. The validation subset consists of 3,500
object instances and was used for testing. We fine-tuned
the SGIOS model for 50 epochs with a training batch size
of 5 and an initial learning rate of 1e − 4. The learning rate
varied between the epochs using an exponential decay
schedule with a decay rate of 0.9 every 5 epochs and was

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 6: Iterative click sampling on incorrect predictions. (a) Initial prediction when two clicks are placed on the object of interest. (b)
Prediction after an additional click is sampled in the right error region. (c) Prediction after one click is sampled in each of the remaining
two error regions.
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capped to 5e − 7. To make the model flexible and avoid over-
fitting to the semantic prior map, we randomly reset this
prior map to a blank mask containing all zeros in the train-
ing stage.

Comparison with the state of the art models. We used
the same methodologies used in prior work [36, 42] to eval-
uate our model’s effectiveness on Pascal VOC.

(i) The average number of clicks required to reach the
intersection over union (IoU) threshold 85% on Pas-
cal VOC. For each object, we compute the number
of clicks used until obtaining a segmentation with
intersection-over-union (IoU) greater than or equal
to 85%. If the desired IoU was not reached for any
object within 20 clicks, we thresholded the number
of clicks to 20. The average number of clicks was
computed over all objects in the validation dataset.
Table 1(a) reports the result, SGIOS achieves the best
number of clicks at 3:1.

(ii) The mIoU with different numbers of clicks. Figure 9
shows the mIoU using different numbers of clicks
over the objects in the validation dataset. This shows
the benefit of using a semantic prior map is most
apparent when a smaller number of clicks is pro-
vided. With a single click, SGIOS reaches an IoU of
74.7% and outperforms all other models by a consid-
erable margin, demonstrating that the use of SGIOS
reduces the number of clicks required for strong per-
formance, thus mitigating the time cost of annota-
tion. Figures S1 to S3 show several example
predictions obtained on Pascal VOC using a single
click, two clicks, and three clicks.

Testing on the LSC dataset. We tested our SGIOS
model on plant segmentation using the LSC dataset [39,
40]. We used 276 LSC images with object mask labels out

of the 347 images provided in the original dataset. We con-
sidered every leaf to be a single object and obtained 3152
object instances from the 276 images. Table 1(b) demon-
strates that using the semantic prior map provides a mar-
ginal benefit. The LSC dataset is very challenging for
instance segmentation because the leaves are in very close
proximity and often obscure one another. Figures S4 and
S5 show some example predictions obtained on this
dataset using two and three clicks, respectively. Please
note that we used the model trained on Pascal VOC to
test on this dataset, and did not train on this dataset.

Besides, we tested the performance of our model in the
absence of semantic prior map by passing a blank mask to
the semantic mask channel input. The average number of clicks
required to reach the threshold of 85% for this subset is 3.5.
This experiment confirms that the model is flexible to the pres-
ence of the semantic information and can perform reasonably
well even if the semantic information is not present.

3.2. A Study on Annotation Using IDEAS. We conducted a
preliminary study with the help of an expert biologist who
helped perform annotations using our GUI. The study was
performed to evaluate the advantage of using the semantic
prior map for interactive image segmentation task. In par-
ticular, the study was designed to determine whether the
use of a semantic prior map helps to save time to annotate
an image.

Design of the study. A set of ten in vitro poplar tissue
culture images were selected for annotation using IDEAS.
These images were randomly divided into two counterba-
lanced groups as follows:

(i) Group 1 - The operator annotates five images with-
out using the semantic prior map first and then
annotates the same set of images using the semantic
prior map.

(a) (b) (c)

Figure 7: Demo of the “ refinement “ process: (a) The label from given ‘posPen’ and ‘negPen’ strokes is errant along the boundary. (b) User
adds more strokes and the precision of the predicted labels is highly improved. (c) Finalized label for the object of interest.

(a) (b) (c)

Figure 8: Demo of the lock/unlock functions. (a) The classes callus (blue) and shoot (green) have been already labeled. (b) If callus and shoot
are locked, annotation of the new object, stem (red) cannot change their labels. (c) If callus and shoot are unlocked, annotation of stem
changes their labels.
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(ii) Group 2 - The annotator annotates five images using
the semantic prior map first and then annotates the
same set of images without using the semantic prior
map.

The study took place in four sessions, with two sessions
for each group. Each session took close to two hours to com-
plete and was conducted over two days. The scheme was
designed to control for the risk of bias from the learning
effect when the operator annotates a given image twice and
may recall details from the first annotation. Annotations
were performed by an expert in plant issue culture. The par-
ticipant was briefly introduced to how to use the system and
was given time to practice using the system for a day before
beginning the study. Time taken to annotate each individual
explant on each plate was recorded.

Collected images. The images used were sourced from
an ongoing study of in vitro regeneration in poplar
(Figure 4), a departure from our use of in planta samples
presented for the earlier GWAS demonstration (Figures 1–
3). The complete dataset features a total of 1,278 genotypes,
each represented by four plates with twelve stem explants.
Two plates of each were subjected to an indirect regenera-
tion treatment (callus induction media followed by shoot
induction media) and a direct regeneration treatment (shoot
induction with no pre-incubation on callus induction
media).

Prepare the offline model for computing semantic
prior map. We first randomly sampled 100 images from
the collected dataset and annotated them on IDEAS with
no semantic prior map, in which the default SGIOS model

trained on Pascal VOC is used. We then fine-tuned the
model DeepLabv3+ [28] for semantic segmentation. We
use the data augmentation strategies (including random
rotation, random flipping, random cropping) to improve
the performance. The model was fine-tuned for 25,000
iterations using an SGD optimizer with a learning rate of
1e − 3 and batch size of 4. Afterwards, this trained model
was used to generate semantic prior maps to assist further
annotation using SGIOS, thus enabling accelerated expan-
sion of the training set beyond the initial 100 images.

Timing of annotation. We recorded the time taken to
annotate individual explants on the plate with and without
semantic prior maps. The study consisted of annotating
ten plates where each plate had 12 explants, yielding a total
of 120 paired data points. We next performed statistical
analysis to inform whether the difference in annotation
speed results from an advantage of SGIOS, or is due to ran-
dom chance. We converted the recorded time into seconds
and checked the difference in time for normality using the
Shapiro-Wilk test. By observing the histogram of the differ-
ence in Figure 10 and the p-value from the Shapiro test equal
to 1:868e − 12, we concluded that the data violates the nor-
mality assumption. Thus, we conducted a non-parametric
test, the Wilcoxon signed-rank test, on the paired data.
The Wilcoxon signed-rank test indicated that significantly
less time was needed for annotation when semantic informa-
tion was used, (V= 1954.5, p-value = 9.168e − 06, Wilcoxon
signed-rank test). Boxplots for both groups are shown in
Figure 11. The mean time taken to annotate an explant using
a semantic map is 19.99% (27.66 +/-8.15 secs, n=120) less
than the time taken to annotate an explant without using it.

3.3. A High-Throughput Phenotyping System with IDEAS.
We applied our system, IDEAS, as part of a GWAS of in
planta regeneration in Populus trichocarpa (poplar). In this
experiment, we applied our phenotyping system toward dis-
covering genes that contribute to variable regeneration
response. Plant materials phenotyped included 1,206 clones
that represent genetic diversity from California to British
Columbia and have been propagated at a field trial location
in Corvallis, OR. Plant cuttings from a wide variety of natu-
ral genotypes [48] underwent a regeneration-promoting
hormone treatment at the cut surface while rooting in water,
then were imaged to provide RGB data for analysis. A subset
of these images was annotated using IDEAS to build a train-
ing set. A semantic segmentation model was trained and
then used to segment the remaining, unseen images. Using
image processing techniques, we calculated statistics sum-
marizing the segmentation outputs. These statistics were
used to represent phenotypes in GWAS, revealing genetic
markers associated with these phenotypes.

Phenotype Data Collection and Summarization.

(i) Imaging. The stem cuttings were collected from the
field and incubated at 4 ∘ C for 2-4 weeks. Dormant
stem cuttings were placed in 50mL Falcon tubes
with water for five weeks. Once-per-week from the
second week onward, the cut tip of each stem was
treated with a droplet containing the plant growth

Table 1: (a) Comparison of interactive models to find the number
of clicks required to reach a threshold IoU (85%) on Pascal VOC.
(b) Number of clicks required by SGIOS to reach a threshold IoU
(85%) on the LSC dataset with and without using the semantic
prior map.

(a)

Method
Pascal VOC

@85%

Graph cut [43] 15.0

Geodesic matting [44] 14.7

Random walker [45] 11.3

iFCN [35] 6.8

RIS-Net [46] 5.1

DEXTR [47] 4.0

ITIS [36] 3.8

SGIOS (ours) 3.1

(b)

Method
LSC
@85%

SGIOS (without) 16.14

SGIOS (with) 15.40
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regulator thidiazuron at 0.5mg/mL in water. Stem
tips were imaged at weekly timepoints by conven-
tional photography using a consumer-grade camera
held over plants by a mount. As phenotyping all
cuttings at once would have been impractical with
limited resources, cuttings were divided into seven
groups of up to 400 cuttings each, with groups
undergoing this process one after another. This pro-
cess was performed for up to 400 cuttings at a time.
The first group was the only one to include images at
the first week and did not include images for fourth
and fifth weeks. The third group was missing data

for the fourth week. From the fourth group onward,
plants were studied in replicates of two and the com-
puted values used for GWAS are the average of
values for each replicate.

(ii) Annotating.We collected 4,896 phenotype images as
described, then randomly selected 249 images and
annotated them using IDEAS. Figure 12 shows some
examples of the annotated labels. Images were
annotated to divide plant tissue into segments yet
to undergo regeneration (stem) or one of two stages
of regenerated tissue (callus or shoot). These
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annotated images were then randomly split into the
validation set and the training set with 24 and 225
images, respectively. In Table 2, we summarized
the content of the labeled dataset.

Plant Segmentation. We then trained a semantic seg-
mentation model with the annotated images for computing
biological traits. The details of this step are below.

(i) PSPNet [29]. PSPNet is among the state-of-the-art
architectures used for semantic segmentation. We
adopted PSPNet as the deep segmentation model
and used ResNet-50 as its backbone network in
our work and employed the following training pro-
tocol to train the model to segment the images: We
set the initial learning rate to 0.002 and decreased it
using a polynomial learning rate schedule with
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Figure 11: Time taken to annotate with and without the semantic mask (in seconds).

Figure 12: Examples of annotated ground truth labels overlapped with the RGB image: callus is in red, shoot is in green, and stem is in blue.
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power at 0.9 in each epoch. The training set was
augmented with 1) random scaling to different sizes
with scales 0:55 ~ 1:0, 2) flipping horizontally with
probability at 0.5, (3) random rotation with angle
between −10∘ ~ 10∘. We trained the model for 60
epochs with batch size of 4 and weight decay of 4e
− 4. Note that PSPNet can be replaced with another
semantic segmentation model without affecting the
phenotyping system pipeline.

(ii) Metric. To verify the performance on semantic seg-
mentation, we apply the IoU metric, which is com-
puted as Pred ∩GT/Pred ∪GT . Here, we report the
IoU for each class as well as the mean IoU over all
classes.

(iii) Experiment 1. Our research dataset of images from
regenerating plants features a relatively small num-
ber of classes (stem, callus and shoot) found in a
limited number of contexts, unlike highly complex
datasets that dominate deep neural network
research. Considering this together with reported
successes of random forest in segmenting plant tis-
sues [49, 50], we compared the performance of ran-
dom forests and PSPNet [29] in segmenting our
plant images. PSPNet [29] outperformed random
forests by a margin of approximately 30% IoU for
each class of interest in the validation dataset
(Table 3). Furthermore, PSPNet yields a smaller dif-
ference between training and validation IoU than
was seen with random forests, suggesting that the
deep architecture of PSPNet [29] better captures
high-level features and avoids overfitting.

(iv) Experiment 2. To gain insight into an appropriate
number of training samples for use in our workflow,
we explored the relationship between the number of
training examples and the quality of segmentation.
We trained six different models using 20, 40, 60, 80,
100, and 120 images randomly selected from our
training set and tested each model’s performance
using the same validation set of 20 images. As shown
in Figure 13, the Mean IoU increased significantly as
the training sample size increased to 40, 60, and 80.
As the sample size increases to 100 and further, addi-
tional increases in Mean IoU become markedly
diminished but may remain significant and valuable
for applications that benefit from high precision. In
summary, the deep learning models’ performance
relies heavily on the size of the training set, and the
inclusion of additional images can almost always be
expected to improve the quality of segmentation

results. These results demonstrate the importance of
a substantial training set for semantic segmentation,
underscoring the value in developing efficient and
intelligent interactive image segmentation algorithms
and annotation tools such as IDEAS.

Biological traits. After the semantic segmentation
model was trained on the collected training set, we used it
to predict labels given unseen images. Next, we calculate
the relative area, which represents the development of spe-
cific tissues in each image, and used these in our down-
stream models for GWAS. Computation of relative area is
shown in eq. (2):

Areac =〠
x,y
1 cf g I x, yð Þð Þ ð1Þ

RAreac =
Areac

∑cAreac
ð2Þ

Where I is the semantic segmentation from the PSPNet
[29] and c is the category of the tissue for which relative area
is being calculated.

Association mapping. We present results from GWAS
for a key trait of interest, the area of shoot grown at the final
timepoint (fifth week). In this analysis, we apply a mixed lin-
ear model approach that is commonly used for GWAS of
continuous phenotypes and assumes normality of residuals.
To avoid a severe violation of this assumption, genotypes
labeled by the model as having zero values (no shoot) were
dropped and the remaining phenotype data underwent a
natural logarithm transformation. The population analyzed
in this case study consists of 326 clones for which genotype
data was available and phenotype data is nonzero.

Genotype data used for analysis was obtained from the
Bioenergy Science Center at Oak Ridge National Laboratory
(https://cbi.ornl.gov/gwas-dataset/) and filtered for minor
allele frequency and missing rates using PLINK [51]. The fil-
tered dataset used for analysis features approximately 5.3
million single-nucleotide polymorphisms (SNPs), each of
which are polymorphic in at least 5% of genotypes and non-
missing in at least 90%.

We employed Genome-wide Efficient Mixed Model
Association (GEMMA) [52] as a GWAS method. Mixed
models are built for each SNP, explaining the phenotype as
a function of the given SNP and covariates. To control for
potential confounding factors of cutting size and population
stratification, we included covariates of stem diameter, a kin-
ship matrix and three principle components derived from
SNPs. Multiple-testing correction performed using the

Table 2: Distribution of annotated images.

Items Analysis result

Distribution over weeks 1 ~ 5 12.8%, 19.0%, 27.7%, 16.9%, 23.6%

Avg. percentage of annotated pixels Shoot: 0.14%, callus: 2.59%, stem: 1.94%

Avg. number of isolated clusters Shoot: 0.14, callus: 3.00, stem: 3.72
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Benjamini-Hochberg method was used to calculate a p-value
threshold with a false-discovery rate of 10% [53]. Putative
associations with p-values less than or equal to this threshold
are reported in Figure 14 and Table 4.

Interrogation of putative associations. To determine
genes implicated by these genetic markers, we consulted a
reference Populus trichocarpa genome [54] annotation (ver-
sion 3.1 available at https://phytozome-next.jgi.doe.gov) to
determine relative positions of these genetic markers to gene
transcripts. To identify homologs of implicated genes in
better-characterized plant species, and thus gain insight into
the function of these genes, we referred to a database of
Smith-Waterman alignments of predicted peptides between
P. trichocarpa and the model plant Arabidopsis thaliana
(https://phytozome-next.jgi.doe.gov).

The two candidate genes implicated by lowest p-values
are related to Arabidopsis genes with known roles in regen-
eration (Figure 14 and Table 4). CHALCONE SYNTHASE
(CHS) encodes a protein essential for a rate-limiting step
of the biosynthesis of anthocyanin, which may influence
shoot regeneration by dual mechanisms of auxin transport
regulation [55] and light stress protection. Loss-of-function
mutations of CHS are reported to be deficient in shoot
regeneration, with a light-dependent effect [56]. SALT-
AND-DROUGHT-INDUCED RING FINGER 1 (SDIR1) is
an E3 ubiquitin ligase critical for regulation of protein
degradation downstream of the hormone abscisic acid.

Loss-of-function and overexpression lines of SDIR1 display
enhanced and inhibited levels of in vitro seedling germina-
tion, respectively [57]. Supplementation of in vitro media
with abscisic acid has been reported to enhance in vitro
regeneration in diverse plants, particularly via the route
of somatic embryogenesis [58].

Our third candidate (Potri.005G004700) is a gene of
unknown function that invites further review by biologists
aiming to characterize the genetic basis of plant regenera-
tion. Smith-Waterman alignments reveal no Arabidopsis
homolog of this gene.

Table 4 shows quantitative trait loci (QTLs) with their p-
values calculated by GEMMA. Accession IDs of nearby gene
candidates are reported, along with the distance of the QTL
from each gene. The most similar Arabidopsis homolog is
shown for each candidate gene, along with the similarity as
calculated by Smith-Waterman alignment. Chr14:2487581
appears between two genes and both of these possible caus-
ative genes are listed. Potri.005G004700 is implicated by two
significant QTLs.

4. Discussion

While supervised deep learning has demonstrated great
power for diverse image tasks, the potential for this technol-
ogy to be applied to specific tasks is constrained by the abil-
ities of users to produce sufficient training data. Moreover,
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Figure 13: The Mean IoU for different number of training examples.

Table 3: Segmentation IoU score (in %) on the training and validation dataset.

Method Dataset Background Stem Callus Shoot mIOU

RF [50] train: 94.62% 69.83% 38.75% 40.82% 61.00%

RF [50] val: 93.83% 57.67% 20.92% 39.36% 52.95%

PSPNet [29] train: 99%.35 89.76% 73.96% 74.36% 84.36%

PSPNet [29] val: 99.36% 88.14% 61.95% 67.40% 79.21%

13Plant Phenomics

https://phytozome-next.jgi.doe.gov
https://phytozome-next.jgi.doe.gov


for plant biology and other fields in which researchers com-
monly lack a computer science background, an essential pre-
requisite for the broad dissemination of deep learning is the
development of generalizable workflows with user-friendly,
high-level interfaces for annotating training data and
deploying models. This combination of challenges presents
a need for innovation both in algorithm and interface
design. To this end, we created a novel annotation system
tailored to the needs of plant biologists engaged in pheno-
typing of plant tissues during any stage of growth or
regeneration.

IDEAS enables high-throughput measurement of plant
tissues, and can be easily applied to diverse tissue types by
user annotation of features of interest. A major advantage
of IDEAS is the capability to accurately define tissue object
boundaries that are highly complex and thus ignored or
misidentified by common annotation methods involving
polygons or bounding boxes. Manual pixel-scale annotation
can produce highly precise boundaries, but the labor-
intensiveness of this process presents an obstacle to
generating sizable training sets. Our semantic-guided inter-
active object segmentation algorithm provides high preci-
sion at high speed, delivering substantial reductions to the
labor cost of generating high-quality training sets for
complex traits.

Worth emphasizing is that interactive segmentation is a
more complex problem than semantic segmentation, espe-
cially because user annotation involves separate instances
of a given type of object (class). Thus, the potential for the

semantic prior maps to improve interactive segmentation
has several noteworthy limitations. First, in cases where
there exist adjacent or touching objects of the same class,
the separation of these objects by the user is particularly dif-
ficult, and may not be improved by the use of a semantic
prior map lacking instance information. Second, the perfor-
mance of semantic segmentation tends to be better for larger
objects than for smaller objects. Hence, for small objects, a
semantic prior map may provide little or no benefit to the
system. These limitations considered, the effective use of a
semantic prior map to guide interactive segmentation must
include an ability to apply the prior only when it offers a per-
formance benefit. In a preliminary study, we examined the
use of prior information and conducted a statistical analysis
to determine whether using a semantic prior map helps to
accelerate annotation. The semantic prior map was found
to confer a statistically significant increase in annotation
speed of approximately 20 percent. Finally, we demonstrated
our system using the case study of a GWAS of in planta
regeneration in poplar. Top associations from this GWAS
implicate genes with Arabidopsis homologs that have known
roles in regeneration pathways. Regeneration entails
hormone-driven processes [59] involving hormones includ-
ing auxin and abscisic acid, which are regulated by genes
including CHS [55] and SDIR1 [57, 58], respectively. The
agreement between our results and established models of
these genes’ roles in regeneration suggests that our pheno-
typing system is effective in capturing the shoot regenera-
tion phenotype in our case study. Furthermore, the

Table 4: QTLs, implicated poplar gene candidates and related Arabidopsis homologs.

QTL p-value Gene candidate Proximity (bp) Arabidopsis gene Similarity

Chr5:284409 5.1e-08 Potri.005G004700 692 None N/A

Chr5:284964 6.5e-08 Potri.005G004700 137 None N/A

Chr9:4459368 4.7e-08 Potri.009G034700 1,283
AT3G55530: SALT- AND DROUGHT-INDUCED RING

FINGER1
85.4%

Chr12:9509286 1.1e-07 Potri.012G070801 8,961 None N/A

Chr12:15334435 4.5e-08 Potri.012G138800 1,155 AT5G13930: CHALCONE SYNTHASE 83.0%

Chr14:2487581 5.5e-08
Potri.014G029200;
Potri.014G029300

1,924; 2,556
AT1G07700: Thioredoxin superfamily protein;
AT5G42890: STEROL CARRIER PROTEIN 2

88.7%;
81.3%
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Figure 14: This Manhattan plot shows the significance of genetic markers in models explaining the shoot regeneration phenotype as a
function of each marker. The blue line represents a threshold for a false discovery rate of 10%, calculated by the Benjamini-Hochburg
method [53].
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appearance of an unknown gene as a putative association
provides an example of how this system can contribute
to genetic discovery.

5. Conclusion

We developed a robust deep segmentation phenotyping sys-
tem utilizing a web-based annotator, IDEAS, for generating
ground truth datasets. Using the semantic-guided interactive
object segmentation backend, IDEAS provides an acceler-
ated means of labeling objects at pixel-scale with precise
boundaries. Using labels generated by the annotator,
researchers can train a deep model for semantic segmenta-
tion, deploy the model to make predictions over a large data-
set and compute statistics summarizing segments of
biological interest. Downstream, GWAS revealed genetic
markers associated with traits phenotyped by computer
vision. Our system can be used by plant biologists who are
interested in complex segmentation-based traits, for which
generation of large training sets may otherwise be time-
prohibitive.
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