Massive Transcriptome Changes during Leaf Senescence
in Field Grown Populus trichocarpa Nisqually-1 using
KBase Tools

Haiwei Lu and Steve Strauss

Oregon State University

BER Plant Genomic Science Workshop, PAG XXVII
January 14, 2019

#) Oregon State
&%/ University




The concept of leaf senescence

* The final developmental stage before leaf death

* A slow process during which nutrients are remobilized into seeds of
annual plants or bark and other tissues of perennial plants
— An actively and highly regulated process
— Essential to plant reproduction and survival

Leaf developmental stage

Image adapted from Kim et al. Current Opinion in Plant Biology (2016)
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Coordinated changes occur in cell structure,
metabolism pathways, and gene expression

Onset of leaf senescence

 Shift in gene expression ——> [nitiation phase

e Chlorophyll degradation

* Degradation of proteins, lipids and other macromolecules _—
Re-organization phase

* Nutrient translocation by the phloem (sucrose, amino acids, etc)

* Cell death (disruption of nucleus and mitochondria) —> Terminal phase

Leaf abscision (not always)

TRENDS in Plant Science

Munné-Bosch. Trends in Plant Science (2008)




Previous studies focused on transcriptome changes
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Limitations of previous work

* Focused on annual species, therefore provided limited insights to
guestions related to dormancy and perennial growth

e Used microarray or Sanger-sequencing based methods which are low
throughput and inefficient at detecting low abundance transcripts



Goals of the project

 Examine gene expression patterns in depth during temperature and
photoperiod-induced natural senescence in Populus

e Develop a toolkit useful for metabolic engineering of senescence-
related traits, such as knowledge of key transcription factors,
regulatory networks, and promoters useful for developmentally timed
activities
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Experimental strategy

e Collected leaf samples (P. trichocarpa) at
the end of each month from May to
October in 2012, 2015, and 2016

e Built and sequenced a total of 54 RNA-seq
libraries

— three biological replicates for each collection
timepoint

e |dentified differentially expressed genes
DEGs, FDR < 0.05) and gene ontologies
GOs, log FC=1.5; FDR < 0.05) s R S T :
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— primary analysis focused on 2015 and 2016 i RECMPIRERILS.
opulus trichocarpa Nisqually-1

data Replicate trees of P.
used for RNA-seq near OSU (Corvallis, OR)




Hypotheses to test

* Samples collected from different months differ in expression patterns, and
cluster according to chronology and physiological state

* Genes related to chlorophyll biosynthesis, photosynthesis, protein
synthesis and other energy-requiring activities, are down-regulated as
leaves senesce

e Genes related to reactive oxygen species (ROS) and catalytic activity are up-
regulated as leaves senesce

* Due to the depth of sampling in our RNAseq study compared to prior work,
we will detect large numbers of genes not previously associated with
senescence in perennial plants

10



Workflow of RNA-seq analysis

Transcript assembly DEG GO
& quantification identification enrichment
(StringTie) (DESeq2) (AgriGO)

Read alignment

(HISAT2)

Generate lists of DEGs and GOs

0#2 Visualize results
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Create RNA-seq Sample Set

Provide RNA-seq reads and the metadata to create an RNA-seq Sample Set

Align Reads using HISAT2 - v2.1.0

Align sequencing reads to long reference sequences using HISAT2

Assemble Transcripts using StringTie - v1.3.3b

Assemble the transcripts from RNA-seq reads using StringTie

Create Differential Expression Matrix using DESeq2 - v1.20.0

Create differential expression matrix based on a given threshold cutoff

Create Feature Set/Filtered Expression Matrix From Differential
Create FeatureSet/Filtered Expression Matrix based on given threshold cutoffs

Functional Enrichment for GO Terms - v1.0.8
Compute GO term enrichment for genomic features

12



KBase provided an easier and faster way for
analyzing our large dataset

_ _ ' eq Sample Set
S gunzip Ptrichocarpa_444_v3.0.fa.gz Command-base pads and the metadata to create an RNA-seq Sample Set

S gunzip Ptrichocarpa_444_v3.1.gene_exons.gff3.gz analysis outside KBase

sing HISAT2 - v2.1.0
S gffread -E Ptrichocarpa_444 v3.1.gene_exons.gff3 -T -o- > eads to long reference sequences using HISAT2
Ptrichocarpa_444 v3.1.gene_exons.gtf

S hisat2_extract_splice_sites.py Ptrichocarpa_444 v3.1.gene_exons.gtf >
Ptrichocarpa_444 v3.1.ss

S hisat2_extract_exons.py Ptrichocarpa_444 v3.1.gene_exons.gtf >
Ptrichocarpa_444 v3.1.exon

S hisat2-build --ss Ptrichocarpa_444 v3.1.ss --exon Ptrichocarpa_444 v3.1.exon
Ptrichocarpa_444 v3.0.fa Ptrichocarpa_444 v3.1. tran

S hisat2 -p 8 --dta -x Populus_trichocarpa_v3.40_tran -U lane5-s003-indexRPI1-ATCACG-
15MT1_S3 LO0O5 R1 _001.fastq-S 15May _Tl.sam

S samtools sort -@ 8 -0 15May_T1.bam 15May_T1.sam
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Each library had 18 to 30 million reads
mapped to the P. trichocarpa genome

Sample Total Reads Mapped A:\i,,clg:::zl:ts Singletons Sample Total Reads Mapped A:\ilflgl:\::l:l:ts Singletons
2015MayT1 39,028,092 27,546,804 5,242,879 22,303,925 2016MayT1 45,063,842 30,586,150 2,633,596 27,952,554
2015MayT2 37,618,748 25,994,451 3,787,680 22,206,771 2016MayT2 40,719,864 30,478,767 2,214,183 28,264,584
2015MayT3 41,864,782 27,022,013 7,136,967 19,885,046 2016MayT3 36,905,845 26,138,307 1,964,928 24,173,379
2015JuneT1 38,383,412 (17,662,780 1,669,728 15,993,052 2016JuneTl1 40,347,881 23,337,970 1,880,171 21,457,799
2015JuneT2 36,034,085 23,808,026 2,515,832 21,292,194 2016JuneT2 34,019,874 18,115,784 1,449,646 16,666,138
2015JuneT3 40,129,485 21,895,438 1,932,833 19,962,605 2016JuneT3 43,456,828 27,814,089 1,889,700 25,924,389
2015JulyT1 35,998,575 24,708,472 2,367,903 22,340,569 2016JulyT1 41,609,097 30,508,159 2,918,727 27,589,432
2015JulyT2 35,816,142 22,099,437 2,431,281 19,668,156 2016JulyT2 39,097,800 21,968,256 4,861,689 17,106,567
2015JulyT3 38,873,070 28,341,217 2,851,425 25,489,792 2016JulyT3 40,315,148 28,000,800 3,158,295 24,842,505
2015AugT1 44,057,801 29,755,263 4,205,508 25,549,755 2016AugTl1 39,008,336 26,108,091 5,318,932 20,789,159
2015AugT2 35,787,635 18,744,647 2,388,791 16,355,856 2016AugT2 46,381,838 30,411,124 5,456,267 24,954,857
2015AugT3 35,853,042 18,914,492 1,587,492 17,327,000 2016AugT3 42,925,471 18,003,108 2,573,392 15,429,716
2015SeptT1 43,618,559 29,698,837 3,552,201 26,146,636 2016SeptT1 34,782,308 21,455,809 1,991,959 19,463,850
2015SeptT2 36,097,415 22,270,423 4,248,765 18,021,658 2016SeptT2 44,279,522 (33,809,765 3,929,300 29,880,465
2015SeptT3 39,873,012 30,127,028 3,266,626 26,860,402 2016SeptT3 33,957,595 20,948,479 4,374,480 16,573,999
20150ctT1 48,464,438 31,575,757, 5,916,244 25,659,513 20160ctT1 35,202,786 24,680,834 2,850,342 21,830,492
20150ctT2 37,174,028 23,159,745 5,664,273 17,495,472 20160ctT2 35,163,735|17,697,293| 3,105,998 14,591,295
20150ctT3 37,428,947 18,307,836 2,386,960 15,920,876 20160ctT3 33,293,602 21,551,049 1,439,902 20,114,147




@ 160ct-T1_alignment
O N dverd ge’ t h ere were 24 v2 - I{BaseRNASeq.RNASquIignmen‘t—Eiﬂ

million mapped reads per overview
| i b ra ry Aligned Using hisat2

Aligner Version 210

. Library Type KBaseFile SingleEndLibrary-2.1
e 21 million reads mapped once

Total Reads 35 202,786

* 3 million reads mappEd maore Unmapped Reads 10,521,952 (29.89%)
than once Mapped Reads 24,680,834 (70.11%)

Multiple Alignments 2,850,342 (11.55%)

Singletons 21,830,492 (B8 45%)
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Collections were clustered into four major groups
in the principal component analysis (PCA) plot
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Collections were clustered into four major
groups (simplified version)
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Number (%) of DEGs identified when comparing the
same month from two different years (FDR < 0.05)

Month - year May2015 June2015 July2015 Aug2015 Sept2015 Oct2015
5,196 (16.1%)
May2016 |- 2,775 (8.6%)
e 2,421 (7.5%)
2,779 (8.6%)
June2016 1,077 (3.3%)
1,702 (5.3%)
420 (1.3%)
July2016 155 (0.5%)
¢ 265 (0.8%)
208 (0.6%)
Aug2016 s 82 (0.3%)
126 (0.4%)
703 (2.2%)
Sept2016 e 299 (0.9%)
Total e 404 (1.2%)
e Down regulated 2,111 (6.5%)
Oct2016 ° Up regu|ated 1,170 (36‘?)
| . 941 (2.9%)




Number (%) of DEGs identified during pair-wise
comparison of 2015 collection (FDR < 0.05)

Month - year

May2015 June2015

July2015

Aug2015

Sept2015

Oct2015

May2015

1,739 (5.4%)
e 988 (3.1%)
e 751 (2.3%)

3,033 (9.4%)
e 1,521 (4.7%)
e 1,512 (4.7%)

5,679 (17.6%)
e 2,945 (9.1%)
e 2,734 (8.5%)

10,636 (32.9%)
e 5,406 (16.7%)
e 5,230 (16.2%)

14,962 (46.3%)
e 7,549 (23.4%)
e 7,413 (22.9%)

June2015

2,276 (7.0%)
e 901 (2.8%)
e 1,375 (4.3%)

5,956 (18.4%)
e 2,915 (9.0%)
e 3,041 (9.4%)

12,049 (37.3%)
e 6,203 (19.2%)
e 5,846 (18.1%)

15,434 (47.7%)
e 7,842 (24.3%)
e 7,592 (23.5%)

July2015

3,875 (12.0%)
e 1,985 (6.1%)
e 1,890 (5.8%)

9,202 (28.5%)
e 4,738 (14.7%)
e 4,464 (13.8%)

13,877 (42.9%)
e 7,153 (22.1%)
e 6,724 (20.8%)

Aug2015

4,128 (12.8%)
e 2,027 (6.3%)
e 2,101 (6.5%)

10,897 (33.7%)
e 5,632 (17.4%)
e 5,265 (16.3%)

Sept2015

Total
e Down regulated

Oct2015

e Up regulated
|

7,226 (22.4%)
e 3,922 (12.1%)
e 3,304 (10.2%)
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Number (%) of DEGs identified during pair-wise
comparison of 2016 collection (FDR < 0.05)

Month - year

May2016

June2016

July2016

Aug2016

Sept2016

Oct2016

May2016

4,619 (14.3%)
e 2,097 (6.5%)
e 2,522 (7.8%)

5,033 (15.6%)
e 2,167 (6.7%)
e 2,866 (8.9%)

7,882 (24.4%)
e 3,659 (11.3%)
e 4,223 (13.1%)

11,419 (35.3%)
e 5,484 (17.0%)
e 5,935 (18.4%)

14,242 (44.1%)
e 7,113 (22.0%)
e 7,119 (22.0%)

June2016

176 (0.5%)
e 90 (0.3%)
.« 86 (0.3%)

1,582 (4.9%)
e 729 (2.3%)
853 (2.6%)

7,348 (22.7%)
e 3,655 (11.3%)
e 3,693 (11.4%)

11,695 36.2%)
e 6,132 (19.0%)
e 5,563 (17.2%)

July2016

1,199 (3.7%)
e 622 (1.9%)
e 577 (1.8%)

7,422 (23.0%)
3,890 (12.0%)
e 3,532 (10.9%)

11,661 36.1%)
e 6,275 (19.4%)
e 5,386 (16.7%)

Aug2016

3,701 (11.4%)
e 1,999 (6.2%)
e 1,702 (5.3%)

9,427 29.2%)
e 5,179 (16.0%)
e 4,248 (13.1%)

Sept2016

Total

Oct2016

e Down regulated
e Up regulated

3,436 (10.6%)
e 2,226 (6.9%)
e 1,210 (3.7%)
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Plots of individual genes indicate reduced
chloroplast/chlorophyll in August

Potri.011G079500 . Potri.001G184000

s Chlorophyll a/b binding protein T 1 . Chloroplast ribosomal protein
-

:
L
.




GOs related to cell recognition and communication,
oxidation reduction, and reproduction were enriched
FC=-1.5)

comparison (FDR < 0.05; log
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Conclusions

* Pair-wise comparison of different collection timepoints revealed extensive
changes in gene expression during the collection period

e Collections (from 2015 and 2016) were clustered into four groups in PCA plot and
heatmap

— I\flay, June, and July samples formed one cluster, Aug, Sept, and Oct samples each formed one
cluster

e Reduced chlorophyll biosynthesis occurred in August, indicating the initiation of
senescence

 Several GO terms, such as those related to metabolic process, reproduction,
signaling, and cellular process, were enriched in early senescence (i.e., July-Aug
comparison)
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Future directions

e Perform cIusterinF analysis to classify collections into different developmental states
(e.g., growth, early senescence, and late senescence)

Refine DEGs and GOs (after assigning collections into development states)

Group DEGs into contrasting gene expression groups

|dentify novel isoforms associated with senescence (enabled by StringTie, the assembler
used in the analysis pipeline)

|ldentify sequence motifs associated with each gene expression group

Validate gene expression using 2012 data and gRT-PCR

26
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