Massive Transcriptome Changes during Leaf Senescence in Field Grown *Populus trichocarpa* Nisqually-1 using KBase Tools

Haiwei Lu and Steve Strauss

Oregon State University

BER Plant Genomic Science Workshop, PAG XXVII

January 14, 2019

The concept of leaf senescence

- The final developmental stage before leaf death
- A slow process during which nutrients are remobilized into seeds of annual plants or bark and other tissues of perennial plants
 - An actively and highly regulated process
 - Essential to plant reproduction and survival

Image adapted from Kim et al. Current Opinion in Plant Biology (2016)

Coordinated changes occur in cell structure, metabolism pathways, and gene expression

Onset of leaf senescence

- Shift in gene expression
 Initiation phase
- Chlorophyll degradation
- Degradation of proteins, lipids and other macromolecules
- Nutrient translocation by the phloem (sucrose, amino acids, etc)
- Cell death (disruption of nucleus and mitochondria) Terminal phase

Leaf abscision (not always)

Re-organization phase

TRENDS in Plant Science

Munné-Bosch. Trends in Plant Science (2008)

Previous studies focused on transcriptome changes during senescence **Genome Analysis**

Research

The Plant Cell, Vol. 23: 873–894, March 2011, www.plantcell.org © 2011 American Society of Plant Biologists

LARGE-SCALE BIOLOGY ARTICLE

High-Resolution Temporal Profiling of Transcripts du Arabidopsis Leaf Senescence Reveals a Distinct Chron Processes and Regulation

Emily Breeze,^{a,1} Elizabeth Harrison,^{a,1} Stuart McHattie,^{a,b,1} Linda Hughes,^{a,2} Richard Hickman,^a 106 9 Steven Kiddle,^{a,b} Youn-sung Kim,^{a,3} Christopher A. Penfold,^b Dafyd Jenkins,^b Cunjin Zhang,^a Karl Mo Carol Jenner.^a Stephen Jackson.^a Brian Thomas.^a Alexandra Tabrett.^a Roxane Legaie.^b Jonathan D.

Lin et al. BMC Plant Biology (2015) 15:43 DOI 10.1186/s12870-015-0433-5

RESEARCH ARTICLE

b

Global analysis of the Gossypium hirsutum Transcriptome during leaf senescence by

Min Lin, Chaoyou Pang, Shuli Fan, Meizhen Song, Hengling Wei and Shuxun Yu

Plant Biotechnology Journal (2007) 5, pp. 192–206

Transcriptome analysis of senescence in th wheat (Triticum aestivum L.)

Per L. Gregersen* and Preben Bach Holm

Danish Institute of Agricultural Sciences, Department of Genetics and Biotechnology, Research Centre Flakkebjerg, D

Gene Expression in Autumn Leaves¹

Rupali Bhalerao, Johanna Keskitalo, Fredrik Sterky, Rikard Erlandsson, Harry Björkbacka², Simon Jonsson Birve, Jan Karlsson, Per Gardeström, Petter Gustafsson, Joakim Lundeberg, and Stefan Jansson*

(R.B., Jo.K., H.B., S.J.B., Ja.K., Per G., Pet. G., S.J.); and Department of Biotechnology, Kungliga Tekniska Högs

Open Access

A transcriptional timetable of autumn senescence

Anders Andersson^{*}, Johanna Keskitalo[†], Andreas Sjödin[†], BMC Rupali Bhalerao^{*†}, Fredrik Sterky^{*}, Kirsten Wissel[†], Karolina Tandre[‡], Plant Biolog Henrik Aspeborg^{*}, Richard Moyle[‡], Yasunori Ohmiya[‡], Rishikesh Bhalerao[‡], Open Acces: Amy Brunner[§], Petter Gustafsson[†], Jan Karlsson[†], Joakim Lundeberg^{*}, Ove Nilsson[‡], Göran Sandberg[‡], Steven Strauss[§], Björn Sundberg[‡],

Transcriptome Analysis of a Subtropical Deciduous Tree: Autumn Leaf Senescence Gene Expression Profile of Formosan Gum

Chi-Hsiang Wen¹, Shih-Shun Lin^{2,3,4} and Fang-Hua Chu^{1,5,*} ¹School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan

²Institute of Biotechnology, National Taiwan University, Taipei, Taiwan ³Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan ⁴Agriculture Biotechnology Research Center, Academia Sinica, Taipei, Taiwan ⁵Experimental Forest, National Taiwan University, Nan-Tou, Taiwan *Corresponding author: E-mail, fhchu@ntu.edu.tw; Fax, +886-2-23654520.

(Received September 2, 2014; Accepted November 3, 2014)

Limitations of previous work

- Focused on annual species, therefore provided limited insights to questions related to dormancy and perennial growth
- Used microarray or Sanger-sequencing based methods which are low throughput and inefficient at detecting low abundance transcripts

Goals of the project

- Examine gene expression patterns in depth during temperature and photoperiod-induced natural senescence in *Populus*
- Develop a toolkit useful for metabolic engineering of senescencerelated traits, such as knowledge of key transcription factors, regulatory networks, and promoters useful for developmentally timed activities

We use RNA-seq to examine gene expression pattern during photoperiod-induced natural senescence in *Populus trichocarpa*

NATURE REVIEWS GENETICS

VOLUME 10 JANUARY 2009 57

RNA-Seq: a revolutionary tool for transcriptomics

Zhong Wang, Mark Gerstein and Michael Snyder

Abstract | RNA-Seq is a recently developed approach to transcriptome profithat uses deep-sequencing technologies. Studies using this method h

RESEARCHARTICLES

The Genome of Black Cottonwood, *Populus trichocarpa* (Torr. & Gray)

science

G. A. Tuskan, ^{1,3*} S. DiFazio, ^{1,4} † S. Jansson, ⁵ † J. Bohlmann, ⁶ † I. Grigoriev, ⁹ † U. Hellsten, ⁹ † N. Putnam, ⁹ † S. Ralph, ⁶ † S. Rombauts, ¹⁰ † A. Salamov, ⁹ † J. Schein, ¹¹ † L. Sterck, ¹⁰ † A. Aerts, ⁹ R. R. Bhalerao, ⁵ R. P. Bhalerao, ¹² D. Blaudez, ¹³ W. Boerjan, ¹⁰ A. Brun, ¹³ A. Brunner, ¹⁴ V. Busov, ¹⁵ M. Campbell, ¹⁶ J. Carlson, ¹⁷ M. Chalot, ¹³ J. Chapman, ⁹ G.-L. Chen, ² D. Cooper, ⁶ P. M. Coutinho, ¹⁹ J. Couturier, ¹³ S. Covert, ²⁰ Q. Cronk, ⁷ R. Cunningham, ¹ J. Davis, ²² S. Degroeve, ¹⁰ A. Déjardin, ²³ C. dePamphilis, ¹⁸ J. Detter, ⁹ B. Dirks, ²⁴ I. Dubchak, ^{9,25} S. Duplessis, ¹³ J. Ehlting, ⁷ B. Ellis, ⁶ K. Gendler, ²⁶ D. Goodstein, ⁹ M. Gribskov, ²⁷ J. Grimwood, ²⁸ A. Groover, ²⁹ L. Gunter, ¹ B. Hamberger, ⁷ B. Heinze, ³⁰ Y. Helariutta, ^{12,31,33} B. Henrissat, ¹⁹ D. Holligan, ²¹ R. Holt, ¹¹ W. Huang, ⁹ N. Islam-Faridi, ³⁴ S. Jones, ¹¹ M. Jones-Rhoades, ³⁵ R. Jorgensen, ²⁶ C. Joshi, ¹⁵ J. Kangasjärvi, ³² J. Karlsson, ⁵ C. Kelleher, ⁶ R. Kirkpatrick, ¹¹ M. Kirst, ²² A. Kohler, ¹³ U. Kalluri, ¹ F. Larimer, ² J. Leebens-Mack, ²¹ J.-C. Leplé, ²³ P. Locascio, ² Y. Lou, ⁹ S. Lucas, ⁹ F. Martin, ¹³ B. Montanini, ¹³ C. Napoli, ²⁶ D. R. Nelson, ³⁶ C. Nelson, ³⁷ K. Nieminen, ³¹ O. Nilsson, ¹² V. Pereda, ¹³ G. Peter, ²² R. Philippe, ⁶ G. Pilate, ²³ A. Poliakov, ²⁵ J. Razumovskaya, ² P. Richardson, ⁹ C. Rinaldi, ¹³ K. Ritland, ⁸ P. Rouzé, ¹⁰ D. Ryaboy, ²⁵ J. Schmutz, ²⁸ J. Schrader, ³⁸ B. Segerman, ⁵ H. Shin, ¹¹ A. Siddiqui, ¹¹ F. Sterky, ³⁹ A. Terry, ⁹ C.-J. Tsai, ¹⁵ E. Uberbacher, ² P. Unneberg, ³⁹ J. Vahala, ³² K. Wall, ¹⁸ S. Wessler, ²¹ G. Yang, ²¹ T. Yin, ¹ C. Douglas, ⁷ # M. Marra, ¹¹ ‡ G. Sandberg, ¹² ‡ Y. Van de Peer, ¹⁰ ‡ D. Rokhsar^{9,24} ‡

Experimental strategy

- Collected leaf samples (*P. trichocarpa*) at the end of each month from May to October in 2012, 2015, and 2016
- Built and sequenced a total of 54 RNA-seq libraries
 - three biological replicates for each collection timepoint
- Identified differentially expressed genes (DEGs, FDR < 0.05) and gene ontologies (GOs, log FC = 1.5; FDR < 0.05)
 - primary analysis focused on 2015 and 2016 data

Replicate trees of *Populus trichocarpa* Nisqually-1 used for RNA-seq near OSU (Corvallis, OR)

Hypotheses to test

- Samples collected from different months differ in expression patterns, and cluster according to chronology and physiological state
- Genes related to chlorophyll biosynthesis, photosynthesis, protein synthesis and other energy-requiring activities, are down-regulated as leaves senesce
- Genes related to reactive oxygen species (ROS) and catalytic activity are upregulated as leaves senesce
- Due to the depth of sampling in our RNAseq study compared to prior work, we will detect large numbers of genes not previously associated with senescence in perennial plants

Workflow of RNA-seq analysis

Generate lists of DEGs and GOs

Visualize results

KBase: An open environment for systems biology

A collaborative, open environment for systems biology

of plants, microbes and their communities

KBase: The U.S. Department of Energy Systems Biology Knowledgebase

KBase: The U.S. Department of Energy Systems Biology Knowledgebase

RNA Create RNA-seq Sample Set

Provide RNA-seg reads and the metadata to create an RNA-seg Sample Set

HISAT-2 Align Reads using HISAT2 - v2.1.0 Align sequencing reads to long reference sequences using HISAT2

Assemble Transcripts using StringTie - v1.3.3b Assemble the transcripts from RNA-seq reads using StringTie

Sea

Create Differential Expression Matrix using DESeq2 - v1.20.0 Create differential expression matrix based on a given threshold cutoff

Create Feature Set/Filtered Expression Matrix From Differential Create FeatureSet/Filtered Expression Matrix based on given threshold cutoffs

Functional Enrichment for GO Terms - v1.0.8

Compute GO term enrichment for genomic features

KBase provided an easier and faster way for analyzing our large dataset

	DULL Create DNIA	ee a Commis Cot			
unzip Ptrichocarpa_444_v3.0.fa.gz Command-base		eads and the metadata to create an RNA-seq Sample Set			
\$ gunzip Ptrichocarpa_444_v3.1.gene_exons.gff3.gz	analysis outside KBase	ısing HISAT2 - v2.1.0			
\$ gffread -E Ptrichocarpa_444_v3.1.gene_exons.gff3 -T -o- > Ptrichocarpa_444_v3.1.gene_exons.gtf		reads to long reference sequences	s using HISAT2		
\$ hisat2_extract_splice_sites.py Ptrichocarpa_444_v3.1.gene_ Ptrichocarpa_444_v3.1.ss	_exons.gtf >		. . ∟		
\$ hisat2_extract_exons.py Ptrichocarpa_444_v3.1.gene_exons Ptrichocarpa_444_v3.1.exon	View Configure	Job Status Result			
\$ hisat2-buildss Ptrichocarpa_444_v3.1.ssexon Ptrichocar Ptrichocarpa_444_v3.0.fa Ptrichocarpa_444_v3.1tran		1 st click			
\$ hisat2 -p 8dta -x Populus_trichocarpa_v3.40_tran -U lane5 15MT1_S3_L005_R1_001.fastq -S 15May_T1.sam		2 nd click			
 \$ samtools sort -@ 8 -o 15May T1.bam 15May T1.sam					

. . .

Each library had 18 to 30 million reads mapped to the *P. trichocarpa* genome

Sample	Total Reads	Mapped	Multiple Alignments	Singletons	Sample	Total Reads	Mapped	Multiple Alignments	Singletons
2015MayT1	39,028,092	27,546,804	5,242,879	22,303,925	2016MayT1	45,063,842	30,586,150	2,633,596	27,952,554
2015MayT2	37,618,748	25,994,451	3,787,680	22,206,771	2016MayT2	40,719,864	30,478,767	2,214,183	28,264,584
2015MayT3	41,864,782	27,022,013	7,136,967	19,885,046	2016MayT3	36,905,845	26,138,307	1,964,928	24,173,379
2015JuneT1	38,383,412	17,662,780	1,669,728	15,993,052	2016JuneT1	40,347,881	23,337,970	1,880,171	21,457,799
2015JuneT2	36,034,085	23,808,026	2,515,832	21,292,194	2016JuneT2	34,019,874	18,115,784	1,449,646	16,666,138
2015JuneT3	40,129,485	21,895,438	1,932,833	19,962,605	2016JuneT3	43,456,828	27,814,089	1,889,700	25,924,389
2015JulyT1	35,998,575	24,708,472	2,367,903	22,340,569	2016JulyT1	41,609,097	30,508,159	2,918,727	27,589,432
2015JulyT2	35,816,142	22,099,437	2,431,281	19,668,156	2016JulyT2	39,097,800	21,968,256	4,861,689	17,106,567
2015JulyT3	38,873,070	28,341,217	2,851,425	25,489,792	2016JulyT3	40,315,148	28,000,800	3,158,295	24,842,505
2015AugT1	44,057,801	29,755,263	4,205,508	25,549,755	2016AugT1	39,008,336	26,108,091	5,318,932	20,789,159
2015AugT2	35,787,635	18,744,647	2,388,791	16,355,856	2016AugT2	46,381,838	30,411,124	5,456,267	24,954,857
2015AugT3	35,853,042	18,914,492	1,587,492	17,327,000	2016AugT3	42,925,471	18,003,108	2,573,392	15,429,716
2015SeptT1	43,618,559	29,698,837	3,552,201	26,146,636	2016SeptT1	34,782,308	21,455,809	1,991,959	19,463,850
2015SeptT2	36,097,415	22,270,423	4,248,765	18,021,658	2016SeptT2	44,279,522	33,809,765	3,929,300	29,880,465
2015SeptT3	39,873,012	30,127,028	3,266,626	26,860,402	2016SeptT3	33,957,595	20,948,479	4,374,480	16,573,999
2015OctT1	48,464,438	31,575,757	5,916,244	25,659,513	2016OctT1	35,202,786	24,680,834	2,850,342	21,830,492
2015OctT2	37,174,028	23,159,745	5,664,273	17,495,472	2016OctT2	35,163,735	17,697,293	3,105,998	14,591,295
2015OctT3	37.428.947	18.307.836	2.386.960	15.920.876	2016OctT3	33,293,602	21,551,049	1,439,902	20,111,147

On average, there were 24 million mapped reads per library

• 21 million reads mapped once • 3 million reads mapped more than once

v2 - KBaseRNASeg.RNASegAlignment-3.0

Overview	KBase
Aligned Using	hisat2
Aligner Version	2.1.0
Library Type	KBaseFile.SingleEndLibrary-2.1
Total Reads	35,202,786
Unmapped Reads	10,521,952 (29.89%)
Mapped Reads	24,680,834 (70.11%)
Multiple Alignments	2,850,342 (11.55%)
Singletons	21,830,492 (88.45%)

Collections were clustered into four major groups in the principal component analysis (PCA) plot

Collections were clustered into four major groups (simplified version)

Number (%) of DEGs identified when comparing the same month from two different years (FDR < 0.05)

Month - year	May2015	June2015	July2015	Aug2015	Sept2015	Oct2015
May2016	5,196 (16.1%) • 2,775 (8.6%) • 2,421 (7.5%)					
June2016		2,779 (8.6%) • 1,077 (3.3%) • 1,702 (5.3%)				
July2016			420 (1.3%) • 155 (0.5%) • 265 (0.8%)			
Aug2016				208 (0.6%) • 82 (0.3%) • 126 (0.4%)		
Sept2016	Total				703 (2.2%) • 299 (0.9%) • 404 (1.2%)	
Oct2016	Down regulate	lated ed	ase			2,111 (6.5%) • 1,170 (3.6%) • 941 (2.9%)

Number (%) of DEGs identified during pair-wise comparison of 2015 collection (FDR < 0.05)

Month - year	May2015	June2015	July2015	Aug2015	Sept2015	Oct2015
May2015		1,739 (5.4%) • 988 (3.1%) • 751 (2.3%)	3,033 (9.4%) • 1,521 (4.7%) • 1,512 (4.7%)	5,679 (17.6%) • 2,945 (9.1%) • 2,734 (8.5%)	10,636 (32.9%) • 5,406 (16.7%) • 5,230 (16.2%)	14,962 (46.3%) • 7,549 (23.4%) • 7,413 (22.9%)
June2015			2,276 (7.0%) • 901 (2.8%) • 1,375 (4.3%)	5,956 (18.4%) • 2,915 (9.0%) • 3,041 (9.4%)	12,049 (37.3%) • 6,203 (19.2%) • 5,846 (18.1%)	15,434 (47.7%) • 7,842 (24.3%) • 7,592 (23.5%)
July2015				3,875 (12.0%) • 1,985 (6.1%) • 1,890 (5.8%)	9,202 (28.5%) • 4,738 (14.7%) • 4,464 (13.8%)	13,877 (42.9%) • 7,153 (22.1%) • 6,724 (20.8%)
Aug2015					4,128 (12.8%) • 2,027 (6.3%) • 2,101 (6.5%)	10,897 (33.7%) • 5,632 (17.4%) • 5,265 (16.3%)
Sept2015	Total	n regulated				7,226 (22.4%) • 3,922 (12.1%) • 3,304 (10.2%)
Oct2015	• Up r	egulated	KBase			19

Number (%) of DEGs identified during pair-wise comparison of 2016 collection (FDR < 0.05)

Month - year	May2016	June2016	July2016	Aug2016	Sept2016	Oct2016
May2016		4,619 (14.3%) • 2,097 (6.5%) • 2,522 (7.8%)	5,033 (15.6%) • 2,167 (6.7%) • 2,866 (8.9%)	7,882 (24.4%) • 3,659 (11.3%) • 4,223 (13.1%)	11,419 (35.3%) • 5,484 (17.0%) • 5,935 (18.4%)	14,242 (44.1%) • 7,113 (22.0%) • 7,119 (22.0%)
June2016			176 (0.5%) • 90 (0.3%) • 86 (0.3%)	1,582 (4.9%) • 729 (2.3%) • 853 (2.6%)	7,348 (22.7%) • 3,655 (11.3%) • 3,693 (11.4%)	11,695 36.2%) • 6,132 (19.0%) • 5,563 (17.2%)
July2016				1,199 (3.7%) • 622 (1.9%) • 577 (1.8%)	7,422 (23.0%) • 3,890 (12.0%) • 3,532 (10.9%)	11,661 36.1%) • 6,275 (19.4%) • 5,386 (16.7%)
Aug2016					3,701 (11.4%) • 1,999 (6.2%) • 1,702 (5.3%)	9,427 29.2%) • 5,179 (16.0%) • 4,248 (13.1%)
Sept2016	Total	n regulated				3,436 (10.6%) • 2,226 (6.9%) • 1,210 (3.7%)
Oct2016	• Up r	egulated	KBase			20

Samples were clustered into four groups in the heatmap based on top 100 DEGs between May and Oct from 2015

Plots of individual genes indicate reduced chloroplast/chlorophyll in August

GOs related to cell recognition and communication, oxidation reduction, and reproduction were enriched in July-Aug comparison (FDR < 0.05; log FC= -1.5)

Conclusions

- Pair-wise comparison of different collection timepoints revealed extensive changes in gene expression during the collection period
- Collections (from 2015 and 2016) were clustered into four groups in PCA plot and heatmap
 - May, June, and July samples formed one cluster, Aug, Sept, and Oct samples each formed one cluster
- Reduced chlorophyll biosynthesis occurred in August, indicating the initiation of senescence
- Several GO terms, such as those related to metabolic process, reproduction, signaling, and cellular process, were enriched in early senescence (*i.e.*, July-Aug comparison)

Future directions

- Perform clustering analysis to classify collections into different developmental states (*e.g.*, growth, early senescence, and late senescence)
- Refine DEGs and GOs (after assigning collections into development states)
- Group DEGs into contrasting gene expression groups
- Identify novel isoforms associated with senescence (enabled by StringTie, the assembler used in the analysis pipeline)
- Identify sequence motifs associated with each gene expression group
- Validate gene expression using 2012 data and qRT-PCR

Key collaborators and funding sources

Priya Ranjan

Vindhya Amarasinghe

