Recognition and quantitative analysis of transformation in tissue cultures using hyperspectral imaging and machine learning

STEVEN H. STRAUSS¹, Michael Nagle¹, Jialin Yuan², Damanpreet Kaur², Jia Yi Li², Nihar A. Doshi², Cathleen Ma¹, Ekaterina Peremyslova¹, Yuan Jiang³, and Fuxin Li².

¹Department of Forest Ecosystems & Society, Oregon State University, Corvallis OR; ²Department of Computer Science, Oregon State University, Corvallis OR; ³Statistics Department, Oregon State University, Corvallis OR.

THE SOCIETY FOR IN VITRO BIOLOGY

FOSTERING THE EXCHANGE OF KNOWLEDGE OF IN VITRO BIOLOGY OF CELLS, TISSUES AND ORGANS

PLANT AND ANIMAL BIOTECHNOLOGY AND GENOMICS

PhD Candidate Michael Nagle

PPT creator

Key innovator and integrator of our phenomics system

Co-lead author of SIVB poster showing applications of phenomic system for in vitro optimization

Presentation Overview

 Introduction to phenotyping of regeneration and transformation (RT) and need for next-generation phenomics

II. Methods

Fluorescent microscopy, 10x

Transgenic shoots

Transgenic callus

Escape shoots

Hyperspectral imaging

III. Example experiments

- GWAS of *in planta* regeneration
- Study of CIM treatments across genotypes

Plant regeneration and transformation traits –critical to agricultural biotechnology, challenging to quantify

Callus induction

Shoot induction

Transformation with GFP plasmid

Overview of phenomics methods developed

Design and use of high-throughput imager of petri dishes

macroPhor Array (Middleton Spectral Vision)

Custom instrument for high-throughput RGB + hyperspectral imaging of petri dishes

Collection of RGB and hyperspectral images

Quantification of fluorophores

Fluorescence spectrum for a pixel

https://bitbucket.org/JialinYuan/image-annotator/

Deep segmentation workflow

Annotation GUI

Training labels

Production of a training set by user annotation of partial dataset

Deployment of trained model to segment full dataset

Neural network for segmentation (Deeplab)

Stacking of image layers from RGB, hyperspectral cameras requires alignment

https://github.com/NSF-Image-alignment/ImageAlignment

- Differing resolutions, proportions, frame, angle of RGB, hyperspectral image layers
- Align green from RGB images, chlorophyll from hyperspectral data
- Batch transformation of RGB images to align with hyperspectral data

Unaligned image channels

Aligned image channels

Measuring transformation rates across portions of images

- Graphical interface for easily...
 - Tweaking parameters for hyperspectral data filtering and visualization
 - Analyzing filtered pixels by regression, PCA

Each dataset analyzed with workflow integrating hyperspectral data, segmentation data for each explant

GMOnotebook

Run phenomics workflow over a new dataset

Notebook template v0.1.45 (May 10, 2020)

Instructions for running this workflow

- 1. Enter information for the experiment below
- 2. Set variables for data paths and parameters
- "Save as" with filename describing experiment and anything special about this analysis (e.g. T18_OD_TAO_wk7_automation_test_attempt2.ipynb)
- 4. Run notebook from console
- 5. Wait for email

Experiment ID and quick description:

CT, CU and CV: Three replicates testing WUS plasmids from multiple species in cottonwoods

Parameters for analysis:

data_folder="CT_CU_CV_raw/wk6/"

]: email=michael.nagle@oregonstate.edu

Calculation of statistics familiar to the study of in vitro regeneration

- Hyperspectral statistics not as easily interpretable as % of (transgenic) explants with callus or shoot
- Classification of tissues as transgenic based on thresholding of x pixels with y reporter protein test statistic
 - Thresholds optimized for statistical power and specificity (via brute force)

Reporter signal in tissues classified as shoot (by explant)

Reporter signal used to classify explants as transgenic (by plate)

Hyperspectral, segmentation analysis effectively substitutes for fluorescent microscopy

- Experimental materials: 204 plates, most with 20 explants each (3,988 total explants), transformed with DsRed reporter
- Phenotyped via both
 - Fluorescent microscopy (by human)
 - GMOnotebook (automated cross-analysis of hyperspectral, segmentation data)
- $R^2 = 0.87$
- Common sources of disagreement:
 - Explants invading space of adjacent explant
 - Tissues misclassified by segmentation model

Presentation Overview

 Introduction to phenotyping of regeneration and transformation (RT) and need for next-generation phenomics

Fluorescent microscopy, 10x

Escape shoots

II. Methods

Hyperspectral imaging to quantify fluorescent proteins

Deep learning for segmentation of plant tissues

Transgenic callus

Transgenic shoots

Callus
Shoot

III. Example experiments

- GWAS of in planta regeneration
- Study of CIM treatments across genotypes

Demonstration of machine vision workflow in Genome-Wide Association Study of *in planta* regeneration

Regeneration induced in stem tips by wounding, cytokinin treatment

Tissue class	Percent of area
Stem	45%
Callus	43%
Shoot	12%

Exploring myriad treatments across diverse genotypes

- Find ideal treatments for individual genotypes
- Find highly heritable treatment effects which provide opportunity for genetic discovery via GWAS
- Two examples:
 - 1. Testing of phytohormones in callus induction media (CIM)
 - 2. Testing effects of CIM pre-culturing prior to transformation

Rates of callus formation after different CIM treatments

Rates of callus regeneration

All callus (including escapes) Rates of callus regeneratior 100% 80% Grid positions with transgenic callus 75% Grid positions with callus 50% 25% 0% **DB0.1** DP4 NB4 DB1 DB0. Treatment name

Transgenic callus

Mixture ID	2,4-D (mg/L)	NAA (mg/L)	BAP (mg/L)	2ip (mg/L)
DB0.1	0.001	0	0.5	0
DB1	0.01	0.01	0.5	0
DP4	0.1	0.1	0	1
NB4	0	0	1	0

Genotype-dependent effects of CIM treatments

Rates of transgenic callus regeneration

CIM preculturing effects on regeneration, vary strongly with genotype

Rates of transgenic shoot regeneration

Genotypes viewed independently CHWJ-27-2-2 NISQUALLY-3 KTMA-12-4-1 BESC-154-1 СНИН-27-2-SKWA-24-2-1 KTMC-12-1-1 SLMB-28-1-1 HOMB-21-4-CHWK-27-3-GW-9850-2 LILB-26-5-1 SKWE-24-2-CA-05-01-1 SKWF-24-5-BESC-843-1 NHTA-27-4-SKWB-24-2-BESC-406-1 GW-9954-1 Grid positions with transgenic shoot 50% 40% • • 30% 20% 10% No Pre No Pre No Pre No Pre No Pre No Pre Pre Pre No Pre Pre No Pre No. Pre Pre N N Pre No. No Pre No Pre ٩ Pre Pre Pre Pre Treatment name

Summary

- High-throughput RGB + hyperspectral imager (*macroPhor Array*)
- Annotation interface to build training set for deep segmentation
- Deep segmentation of RGB images into specific tissues
- Hyperspectral analysis of fluorescent protein content by pixel
- Alignment, integration of deep segmentation and hyperspectral data
- GWAS of *in planta* regeneration using deep segmentation alone
- Use of pipeline to study auxin/CIM and pre-culture effects
- System ready for large scale GWAS of *in vitro* regeneration and transformation - underway

Acknowledgements

We thank the National Science Foundation Plant Genome Research Program for funding "Analysis of Genes Affecting Plant Regeneration and Transformation in Poplar." IOS # 1546900.