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Presentation Overview
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« GWAS of in planta regeneration
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Plant regeneration and transformation traits
—critical to agricultural biotechnology, challenging to quantify

Callus induction Shoot induction Transformation with GFP plasmid
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Overview of phenomics methods developed
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Design and use of high-throughput
iImager of petri dishes

macroPhor Array (Middleton Spectral Vision)
Custom instrument for high-throughput

RGB + hyperspectral imaging 1%y

of petri dishes b
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Collection of RGB and hyperspectral images

- Hyperspectral image :
Laser excitation (visualized with false color) Mage
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Quantification of fluorophores

Fluorescence spectrum for a pixel Vi = XTbi -+ E;
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GUI for annotation of training set

IDEAS: Intelligent DEen Annotator for Segmentation
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Deep segmentation workflow

Annotation GUI
e Training labels

RGB images

7"\',& :?\

Xy Neural
Production of a training set network for

by user annotation of segmentation
partial dataset (Deeplab)

Deployment of trained model to segment full dataset




Stacking of image layers from RGB,
hyperspectral cameras requires alignment

https://github.com/NSF-Image-alighment/ImageAlignment

Damanpreet Kaur JiaYili Fuxin Li
Master’s Student, Undergraduate Student, Co-PI, Professor, Machine
Machine Vision Machine Vision Vision

» Differing resolutions, proportions,
frame, angle of RGB, hyperspectral
image layers

* Align green from RGB images,
chlorophyll from hyperspectral data

* Batch transformation of RGB
:jm?ges to ahgn with hyperspectral Unaligned image channels Aligned image channels
dala




Measuring transformation rates across portions
of Images

GMOdetectoR

* Graphical interface for easily...

* Tweaking parameters for hyperspectral
data filtering and visualization

* Analyzing filtered pixels by regression,
PCA

Chroma standard

Sample image

Grid position

Reporter protein

© DsRed ZsYellow GFP

DsRed in segment: 102k Chl-A in segment: 19k

Plot cropping

Plots to build

Denoising threshold for reporter protein:

Maximum intensity for Chiorophyil:

Maximum intensity for reporter protein:

Chlorophyll signal




Each dataset analyzed
with workflow integrating
hyperspectral data,
segmentation data

for each explant

Segments Fluor.

GFP t-'stat ~_ GFPinshoot GFPincallus GFPinstem

.

GMOnotebook

Run phenomics workflow over a new dataset

Notebook template v0.1.45 (May 10, 2020)
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Instructions for running this workflow

1. Enter information for the experiment below

2. Set variables for data paths and parameters

3. "Save as" with filename describing experiment and anything special about this analysis (e.g.
T18_0OD_TAO_wk7 automation_test_attemptZ2.ipynb)

4. Run notebook from console

5. Wait for email

Experiment ID and quick description:

CT, CU and CV: Three replicates testing WUS plasmids from multiple species in cottonwoods

Parameters for analysis:
data_folder="CT_CU_CV_raw/wk6/"

email=michael.nagle@oregonstate.edu



Calculation of statistics familiar to the study of
In vitro regeneration

Reporter signal in Reporter signal used
e H tral statisti t tissues classified as —> to classify explants as
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Hyperspectral, segmentation analysis effectively
substitutes for fluorescent microscopy

: EXperlmentaI materials: 204 plates, most with 20 : Phenotyping of transgenic shoot regeneration rates:
explants each (3,988 total explants), transformed with Fluorescent microscopy vs. GMOnotebook
DsRed reporter

* Phenotyped via both
* Fluorescent microscopy (by human)
* GMOnotebook

(automated cross-analysis of hyperspectral, segmentation data) ® <0

@ =0

* R?=0.87 @
@ o

 Common sources of disagreement:
* Explants invading space of adjacent explant

Automatic scores (GMOnotebook)

* Tissues misclassified by segmentation model

:
10% 15% 200

3% o
Manual scores (fluorescent microscopy)
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Demonstration of machine vision workflow in Genome-
Wide Association Study of in planta regeneration

Regeneration induced in stem tips by —
wounding, cytokinin treatment Sequence-Kernel Association Test

— Py . - » 874 poplar genotypes
| \f o £ & | |+ 28Mgenetic markers (~71.4% rare) Z‘;tl\r/'-oolilgliﬁfggﬁ
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Tissue class Percent of area
Stem 45%
Callus 430/0 1 2 3 4 5 6 T 8 9 10 11 12 13 14 15 16 17 18 19

Shoot 12%

Chromosome




Exploring myriad treatments across diverse
genotypes

* Find ideal treatments for individual genotypes

* Find highly heritable treatment effects which provide opportunity for
genetic discovery via GWAS

* Two examples:
1. Testing of phytohormones in callus induction media (CIM)

2. Testing effects of CIM pre-culturing prior to transformation



Rates of callus formation after different CIM treatments

Rates of callus regeneration

All callus (including escapes) Transgenic callus
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Mixture ID | 2,4-D (mg/t) NAA (mg/t) BAP (mg/L) 2ip (mg/L)
DBO.1 0.001 0 0.5 0
DB1 0.01 0.01 0.5 0
DP4 0.1 0.1 0 1
NB4 0 0 1 0




Genotype-dependent effects of CIM

treatments

Rates of transgenic callus regeneration
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CIM pre-
culturing effects
on regeneration,
vary strongly
with genotype
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Summary

* High-throughput RGB + hyperspectral imager (macroPhor Array)

* Annotation interface to build training set for deep segmentation

* Deep segmentation of RGB images into specific tissues

* Hyperspectral analysis of fluorescent protein content by pixel

* Alignment, integration of deep segmentation and hyperspectral data
 GWAS of in planta regeneration using deep segmentation alone

* Use of pipeline to study auxin/CIM and pre-culture effects

 System ready for large scale GWAS of in vitro regeneration and
transformation - underway
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