

Next-generation phenomics in support of GWAS to Identify Genes Controlling Regeneration and Transformation in *Populus trichocarpa*

Michael Nagle¹, Jialin Yuan², Zheng Zhou³, Nihar A. Doshi⁴, Fuxin Li², Cathleen Ma¹, Anna Magnuson¹, Chris Draves⁵, Howland Jones⁵, Natalie Crothers⁵, Gabor Kemeny⁵, David Braumann⁵, Yuan Jiang⁶, Ritesh Mewalal¹, and Steven H. Strauss¹ ¹Department of Forest Ecosystems & Society, Oregon State University, Corvallis OR; ²Department of Computer Science,

Oregon State University, Corvallis OR; ³Tencent Inc., Shenzhen, China; ⁴University of Southern California, Los Angeles, CA; ⁵Middleton Spectral Vision, Middleton WI; ⁶Department of Statistics, Oregon State University, Corvallis OR

PAG XXVII, Forest Tree Workshop

Jan. 13, 2019

Presentation Overview

I. New opportunities in phenotyping

- I. Need for innovation
- II. Machine vision
- III. Hyperspectral imaging
- II. Case study: GWAS of regeneration in *Populus trichocarpa*
 - I. Efficient regeneration as a roadblock in plant improvement
 - II. Use of phenomic data
 - III. Preliminary GWAS results

Lack of proven high-throughput phenotyping methods: The primary obstacle to rapid genetic analyses of plants

- Despite advances in genome sequencing, bioinformatics, genetic analysis of plants limited by ability to phenotype.
- Efficient, precise scoring of phenotypes for large numbers of plants, limits experimental design of mutant screens and GWAS¹.

[1] Fahlgren, et al. Curr. Opin. Plant Biol. 2015;24:93-99

Training machine vision system for precise, high-throughput phenotyping

GUI for annotation to train deep learning models: Poster PO0069 Lean

Shoot

Cal br1

Stem Cal1

Sh1

Hyperspectral imaging: Capturing detail invisible to the naked eye

Conventional (RGB)

Hyperspectral

Image from Wikimedia commons

Image from Middleton Spectral Vision

macroPhor ARRAY for high-throughput RGB and hyperspectral imaging

Middleton Spectral Vision, Middleton, WI

RGB and hyperspectral images are collected for each plate on tray

Signals for fluorescent compounds are quantified by linear regression, compared

Presentation Overview

I. New opportunities in phenotyping

- I. Need for innovation
- II. Machine vision
- III. Hyperspectral imaging

II. Case study: GWAS of regeneration in *Populus trichocarpa*

- I. Efficient regeneration as a roadblock in plant improvement
- II. Use of phenomic data
- **III. Preliminary GWAS results**

Efficient *in vitro* regeneration of transformed cells: A barrier to transformation of many genotypes

- Many genotypes, entire species recalcitrant to in vitro regeneration
 - Genotype-indendent methods described as "holy grail" (Hofmann Plant Cell 2016)
- "Although considered part of the transformation process, the regeneration step is often a greater bottleneck than is the stable integration of DNA sequences

The Plant Cell, Vol. 28: 1510–1520, July 2016, www.plantcell.org © 2016 American Society of Plant Biologists. All rights reserved.

PERSPECTIVE

Advancing Crop Transformation in the Era of Genome Editing

Fredy Altpeter,^a Nathan M. Springer,^b Laura E. Bartley,^c Ann E. Blechl,^d Thomas P. Brutnell,^e Vitaly Citovsky,^f Liza J. Conrad,^g Stanton B. Gelvin,^h David P. Jackson,ⁱ Albert P. Kausch,^j Peggy G. Lemaux,^k June I. Medford,¹ Martha L. Orozco-Cárdenas,^m David M. Tricoli,ⁿ Joyce Van Eck,^o Daniel F. Voytas,^p Virginia Walbot,^q Kan Wang,^r Zhanyuan J. Zhang,^s and C. Neal Stewart Jr.^{t,1}

^aAgronomy Department, Plant Molecular and Cellular Biology Program, University of Florida, IFAS, Gainesville, Florida 32611

Poplar an ideal model species to study regeneration

Desirable traits:

- Wide range in regeneration responses across genotypes
- Rapid linkage disequilibrium decay
- Useful resources:
 - Availability of high-coverage genome data for 917 genotypes from Department of Energy's Joint Genome Institute
 - Well-established protocols for transformation and regeneration

De novo organogenesis in Populus trichocarpa: In vivo and in vitro methods

In vitro regeneration

- Standard for transformation and regeneration
 - Phytohormones in media

Stem regeneration

- Stem is cut, leading to callus as wounding response, then shoot
- Cytokinin applied to tip of cut stem encourages transitions to callus and shoot

Regeneration GWAS progress and status

Stem regeneration:

- 590/902 genotypes have been phenotyped, included in test GWAS to refine methods
- Preliminary results for callus, shoot and color of each
- Machine vision training continues, accuracy still improving
- In vitro GWAS:
 - Pilot study ongoing, main phase of phenotyping to be completed in 2020
 - Starting use of hyperspectral imaging

Comparing options to segment images by tissue and color

 Separate classes for tissues of each color: reduced accuracy in predicting tissue type

Number of user-annotated images used in training

Now using second neural network to classify callus, shoot color based on user examples

Phenotype data from machine vision outputs is processed and fed into GWAS pipeline

• Make synthetic variables

Genome-wide association studies to identify genes behind phenotypes

- Standard linear mixed model tools (i.e. Genome-wide Efficient Mixed Model Association) test one SNP at a time
- SNP-seq sequence Kernal Association Test (SKAT) combines SNPs within windows, tests for combined effect

An efficient resampling method for calibrating single and gene-based rare variant association analysis in 2016 case-control studies

SEUNGGEUN LEE*, CHRISTIAN FUCHSBERGER

Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA

ARTICLE

Rare-Variant Association Testing for Sequencing Data with the Sequence Kernel Association Test

Michael C. Wu,^{1,5} Seunggeun Lee,^{2,5} Tianxi Cai,² Yun Li,^{1,3} Michael Boehnke,⁴ and Xihong Lin^{2,*}

ARTICLE

2011

Sequence Kernel Association Tests 2013 for the Combined Effect of Rare and Common Variants

Iuliana Ionita-Laza,^{1,6,*} Seunggeun Lee,^{2,6} Vlad Makarov,¹ Joseph D. Buxbaum,^{3,4,5} and Xihong Lin^{2,*}

Multi-SKAT: General framework to test multiple phenotype

associations of rare variants

Diptavo Dutta^{1,2}, Laura Scott^{1,2}, Michael Boehnke^{1,2}, and Seunggeun Lee *1,2

¹Department of Biostatistics ²Center for Statistical Genetics University of Michigan Ann Arbor, Michigan, USA

2018

SKAT reveals several SNP windows putatively associated with shoot regeneration

Genome-wide view

View zoomed to chromosome 10 subsection, aligned to gene track Potri.010G130000: **ABNORMAL SHOOT 5** Chromosome 10 position -log₁₀(p) Bonf. Before FDR resampling ∞*_ **FDR** (*a*)₀₁gol-After ^{resa}mpling

Arabidopsis ABNORMAL SHOOT 5 role in shoot development

- Gene identified in activation-tagging screen, phenotype replicated by overexpression
- Transcription factor (basic helix-loophelix)
- Effects of overexpression on vegetative and floral shoots:
 - Short length of epidermal cells on adaxial side of leaf, leading to upward curling of leaves
 - ~50% increase in secondary inflorescences

OPEN ∂ACCESS Freely available online The Over-Expression of Two Transcription Factors, ABS5/ bHLH30 and ABS7/MYB101, Leads to Upwardly Curly Leaves

Rui An[®], Xiayan Liu[®], Rui Wang, Haicui Wu, Shuang Liang, Jingxia Shao, Yafei Qi, Lijun An, Fei Yu^{*} State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China

Summary and prospects for next-generation phenomics in GWAS

- Machine vision and hyperspectral analysis offer unprecedented opportunity to capture high-quality phenotype data on large scale
- To incorporate unsupervised learning and semantic segmentation into machine vision
- Appearance of known shoot regulator as 2nd top hit in test phase of shoot regeneration GWAS suggests methods are effective
- Future GWAS using our system: Transformation ability, Response to several *in vitro* treatments, effects of developmental gene overexpression

Acknowledgements

Collaborators:

- Machine vision: Li Lab, Department of Electrical Engineering and Computer Science, Oregon State University
- Hyperspectral imaging: Middleton Spectral Vision Inc.
- Genomics: Center for Bioenergy Innovation at Oak Ridge National Laboratory (Key collaborators Wellington Muchero, Gerald Tuskan)

Funders:

- National Science Foundation (IOS # 1546900)
- Tree Biosafety and Genomics Research Cooperative, Oregon State University

Thank you!