GWAS with high-throughput machine vision phenomics uncovers genetic regulators of *in vitro* transformation and regeneration in *Populus trichocarpa*

Plant and Animal Genome 2023 Conference Forest Trees Session

Michael F. Nagle Department of Forest Ecosystems & Society, Oregon State University, Corvallis OR

Presentation Overview

Objective:

Identify genetic regulators of plant transformation, a complex trait, with high statistical power

- I. High-throughput phenomics
- II. Multiple-workflow association mapping

Deep segmentation

Callus
Shoot
2

Strategy to integrate RGB, hyperspectral data to measure tissue-specific transformation + regeneration

CubeGLM (Python) provides user-friendly Python classes and functions for hyperspectral analysis

- Challenge: Need to efficiently analyze 21,908 hyperspectral images (~1.5GB each, 32.8TB total)
- CubeGLM package key features
 - Quickly compute weights of fluorescent components per pixel
 - Allow visualization of results
 - Parallelization and efficiency
- <u>https://github.com/naglemi/gmodetector</u>
 <u>py</u>

Red: Chlorophyll Green: GFP Blue: Background / Noise

GMOdetector final outputs: Summary statistics of transformation and regeneration

- Two types of statistical outputs of greatest interest
 - Transformation frequency
 - Transformed tissue size
- Tailored, trained for poplar transformation, but generalizable with further work
 - <u>https://github.com/naglemi/</u> <u>GMOnotebook</u>

Presentation Overview

Objective:

Identify genetic regulators of plant transformation, a complex trait, with high statistical power

I. High-throughput phenomicsII. Multiple-workflow association mapping

Hyperspectral imaging

Deep segmentation

Callus
Shoot
6

Poplar GWAS resources an asset to statistical power

- 1323 wild genotypes collected over a diverse range in Pacific Northwest
- Rapid linkage disequilibrium (LD) decay (R^2 < 0.2 within 3kb)
- High SNP density
 - As many as ~30 million SNPs studied
 - ~13 million common SNPs

Non-normality, transformations obstacle to high power

- Transformations (one way to avoid violating assumption of residual normality) can overcorrect, reduce power
- Permutations (Monte Carlo methods) to compute empirical *p*values
 - Avoid linear model assumptions and transformations
 - Great computational expense

Two approaches to increase power by combining power from adjacent genetic markers

Sequence Kernel Association Tests for the Combined Effect of Rare and Common Variants

Resolution

¹ssumptions

Iuliana Ionita-Laza,^{1,6,*} Seunggeun Lee,^{2,6} Vlad Makarov,¹ Joseph D. Buxbaum,^{3,4,5} and Xihong Lin^{2,*}

SNP-set Kernel Association Test (SKAT) and Multi-Threaded Monte Carlo SKAT (MTMC-SKAT)

 No clue on which marker(s) within "window" most critical

 Avoid assumptions by computing empirical *p*-values Association Studies Olga A. Vsevolozhskaya¹, Fengjiao Hu² and Dmitri V. Zaykin^{1*}

Combining Small P-Values in Genetic

Augmented Rank Truncation (ART)

Detecting Weak Signals by

- Single-marker resolution from initial GEMMA, other single-SNP tools.
- Relies on prior test with linear model assumptions

MTMCSKAT enables us to run SKAT with efficient resampling over many traits

- Three key feature additions to SKAT:
 - 1. Adaptive resampling: How many permutations needed for given p-val?
 - 2. Adaptive multithreading: How to parallelize most efficiently?
 - 3. Easy usage with high-performance clusters (HPCs)
- <u>https://github.com/naglemi/mtmcs</u> <u>kat</u>

MTMCSKAT development and deployment supported by NSF ACCESS HPC allocation

ACCESS

Advancing Innovation

Augmented Rank Truncation (ART) increases statistical power for GEMMA and GMMAT tests

GEMMA

GEMMA-ART

Across methods and significance thresholds, MTMC-SKAT and ART most powerful for our data

Importance of wound/defense signaling in regeneration:

Many gene candidates co-regulated by PI4Kβ (salicylic acid signaling) and auxin/cytokinin signaling regulators

Category of gene

Gene expression regulator candidate gene Other candidate gene

Not candidate, but key interactor

Relationships between genes

DEG (downreg.)

→ DEG (upreg.)

Yeast Two-Hybrid

🔫 Yeast One-Hybrid

🛑 ChIP-seq

Ten published high-throughput datasets from Arabidopsis leveraged to build network

Key gene candidates regulate hormone signal within and across phytohormone pathways

Mechanistic connections between gene candidate Arabidopsis homologs from *in vitro, in planta* experiments across 78 studies

In vitro RT

Summary

- GWAS relies on statistical power, which is improved with high-throughput phenomics and combined variant testing.
- Found 409 QTLs, investigated functions and relationships with gene ontology and network analysis
- Regeneration/transformation in poplar depends not only on auxin/cytokinin pathways, but wound/defense pathways associated with salicylic acid, jasmonic acid and ethylene

Acknowledgements

Cathleen Ma Transformation & Greenhouse Experiments

Kate Peremyslova GWAS, Transformation Experiments

Julie Kucinski, GWAS, in vitro experiments

Steve Strauss PI, Professor

Amanda Goddard Program & Field (clone bank) Manager

Fuxin Li Co-PI, Professor, Machine Vision

Machine Vision

 Wanager

 Wanager

 Wanager

Yuan Jiang Co-PI, Professor, Statistics

OAK RIDGE National Laboratory

We thank the National Science Foundation Plant Genome Research Program for funding "Analysis of Genes Affecting Plant Regeneration and Transformation in Poplar." IOS # 1546900.