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The incorporation of DNA into plant genomes followed by regeneration of non-chimeric
stable plants (transformation) remains a major challenge for most plant species.
Forest trees are particularly difficult as a result of their biochemistry, aging, desire for
clonal fidelity, delayed reproduction, and high diversity. We review two complementary
approaches to transformation that appear to hold promise for forest trees.
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SUMMARY

Developmental genes (DG) may be useful tools for promoting transformation. DGs, which can
act through a wide variety of developmental mechanisms to promote regeneration of transgenic
cells, have been widely employed in model plants to promote embryogenesis and in some cases
organogenesis. Following initial experimental demonstration in dicots, the DGs WUSCHEL and/or
BABY BOOM have formed the basis of a high efficiency method for a variety of monocot
genotypes and species. However, in dicots the utility of these genes as the basis of a robust
transformation system has not been demonstrated. Many additional DGs appear capable of
promoting regeneration that have not been systematically explored as transformation tools.

Because in vitro plant transformation systems are costly and must be customized for each new
genotype and species, in vivo approaches to transformation hold much appeal. It is possible to
produce stable transgenic plants by agro-inoculation of seeds or vegetative/floral buds, but as yet
these approaches have not been used routinely in any plant species except for the Arabidopsis floral
dip. We will discuss how the Arabidopsis system, and other in planta techniques, may be tailored
for forest trees, taking into account variations in biology of different taxa.

DEVELOPMENTAL GENES AS TOOLS FOR TRANSFORMATION
IMPROVEMENT

When overexpressed, transcriptional or epigenetic regulators of embryo and meristem
development (referred to as developmental genes, DGs) have been shown to confer improvements
to in vitro regenerability. Recent molecular evidence places these genes within a genetic regulatory
network, connected by cascades and feedback loops of transactivation. Knowledge of these
interactions, detailed in Supplementary Table 1 and Figure 1, can inform selection of individual
genes and combinations of genes that may be most effective for improving regeneration. In this
mini-review, however, we do not consider the many genes which may enhance regeneration via

Frontiers in Plant Science | www.frontiersin.org 1 October 2018 | Volume 9 | Article 1443

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2018.01443
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2018.01443
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2018.01443&domain=pdf&date_stamp=2018-10-02
https://www.frontiersin.org/articles/10.3389/fpls.2018.01443/full
http://loop.frontiersin.org/people/540221/overview
http://loop.frontiersin.org/people/539536/overview
http://loop.frontiersin.org/people/165975/overview
http://loop.frontiersin.org/people/47179/overview
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01443 October 1, 2018 Time: 16:23 # 2

Nagle et al. Innovation in Tree Transformation

FIGURE 1 | Portion of genetic regulatory network with demonstrated ability to enhance regeneration via overexpression. Green nodes represent phytohormones and
green arrows indicate transactivation that results from upstream hormone-triggered cascades (not shown). Auxin leads to PLT upregulation through a relatively
well-characterized cascade (Horstman et al., 2014), as do cytokinins for B-type ARRs (Xie et al., 2018). Blue nodes represent genes which have been shown to
enhance regeneration when overexpressed, and blue arrows indicate direct targets of their transactivation activity (detailed in Supplementary Table 1).

epigenetic mechanisms, or by affecting the rate of gene transfer
or incorporation of DNA into the genome.

Candidate Genes and Their Modes of
Action
The first gain-of-function mutation for a transcriptional
regulator of shoot induction was observed in 1941. Bryan and
Sass discovered a heritable trait in maize that causes leaves to
develop ectopic shoot meristems, or “knots” (Bryan and Sass,
1941). Transposon tagging later revealed the responsible locus
to be Knotted-1, the first homeodomain transcription factor
identified in plants (Hake et al., 1989). Knotted-1 was found
to be overexpressed in mutants as a result of a transposon
insertion (Smith et al., 1992), and overexpression of maize
Knotted-1 in tobacco and Arabidopsis was also reported to trigger
development of ectopic shoot meristems (Sinha et al., 1993;
Lincoln et al., 1994).

A loss-of-function mutation of SHOOT MERISTEMLESS
(STM), an Arabidopsis homolog of Knotted-1, was reported
to lead to premature termination of shoot meristems and
a phenotype of twig-like plants lacking lateral shoots (Long
et al., 1996). Transcription of STM is regulated in part by a
positive feedback loop between STM and the transactivator CUP-
SHAPED COTYLEDON 1 (CUC1) (Supplementary Table 1 and
Figure 1; Takada et al., 2001; Spinelli et al., 2011). Similarly to
STM, overexpression of CUC1 enhances regeneration through
embryogenic and organogenic pathways (Takada et al., 2001;
Hibara et al., 2003). Overexpression of CUC1/2 in Arabidopsis led
to large increases in numbers of shoot from calli, while knockout

had the opposite effect (Daimon et al., 2003). Directly upstream
of CUC1 is LEAFY COTYLEDON1 (LEC1), which was first
identified as a regulator of embryogenesis when overexpression
induced embryos to develop on leaves of Arabidopsis (Lotan
et al., 1998).

A mutant screen for shoot meristem defects led to the
discovery of WUSCHEL (WUS) loss-of-function mutants, which
had similar phenotypes to stm mutants (Laux et al., 1996). WUS is
expressed in the organizing center adjacent to meristematic stem
cells (Mayer et al., 1998), then trafficked into the central zone of
the stem cell niche (Yadav et al., 2010; Daum et al., 2014), where
it is required for maintenance of stem cell identity. Contrarily,
STM is expressed and active in the peripheral zone (PZ) (Williams
et al., 2005; Gordon et al., 2007). In Arabidopsis, overexpression
of WUS was reported to initiate ectopic organogenesis in vivo,
although differentiation into organs was incomplete unless
STM was also overexpressed (Gallois et al., 2002). WUS was
rediscovered in a T-DNA activation mutagenesis screen for
gain-of-function mutations conferring cytokinin-independent
potential for induced embryogenesis in vitro (Zuo et al.,
2002).

Downstream of WUS and STM are overlapping sets of diverse
genes which balance differentiation and dedifferentiation to
promote progressive development of meristems. These genes
include members of the SE-associated receptor kinase (SERK)
family, as well as enzymes for hormone biosynthesis, cell cycle
regulators, and numerous transcriptional regulators, some of
which function not only downstream, but upstream of WUS/STM
(Spinelli et al., 2011; Balkunde et al., 2017; Ikeuchi et al., 2018;
Scofield et al., 2018).
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WUS transcription is activated by a complex of factors
including B-type ARABIDOPSIS RESPONSE REGULATOR
(ARR) and HDIII-ZIP family proteins (Supplementary Table 1
and Figure 1). In separate experiments, overexpression of ARR2
and ARR12 led to roughly twofold increases in number of shoots
from callus in vitro (Dai et al., 2017; Zhang et al., 2017). Contrary
to the roles of B-type ARR genes, overexpression of the A-type led
to strong suppression of in vitro organogenic capacity (Osakabe
et al., 2002; Buechel et al., 2010).

The combined knockout of several HDIII-ZIP factors in
a wus background rescued SAM development, indicating that
these factors may simultaneously promote and inhibit stem cell
differentiation via pathways both dependent and independent
of WUSCHEL (Lee and Clark, 2015). Orthologs of these TFs
found in Populus trichocarpa are expressed in the SAM, and
overexpression promotes stem cell proliferation and inhibits
development of shoot primordia into mature organs (Du et al.,
2011; Robischon et al., 2011; Zhu et al., 2013).

ENHANCER OF SHOOT REGENERATION 1/2 acts
directly upstream of WUS and indirectly upstream of STM
(Supplementary Table 1 and Figure 1) and numerous
other poorly known genes (Chandler et al., 2007; Ikeuchi
et al., 2018). ESR1 overexpression conferred cytokinin-
independent competence for regeneration, although constitutive
overexpression inhibited differentiation of SAMs. Recovery of
transgenic plants was enabled via deactivation of chemoinducible
ESR1 after shoot primordial development (Banno et al., 2001).
ESR2 is transactivated by ESR1 and shares many downstream
targets (Ikeuchi et al., 2018); overexpression of either leads
to remarkable improvement in shoot regeneration capacity
in Arabidopsis (Ikeda et al., 2006; Mase et al., 2007). Unlike
ESR1 (Banno et al., 2001), overexpression of the upstream
gene WOUND-INDUCED DEDIFFERENTIATION 1 (WIND1)
enhances formation of callus in addition to shoots (Iwase et al.,
2016); however, callus develops into shoots upon transfer of
chemoinducible wind1 mutants to media without inducer
(Iwase et al., 2011). Several WIND homologs are known to
transcriptionally activate ESR1 (Supplementary Table 1).

PLETHORA (PLT) 3/5/7 are responsible for direct
transactivation of WUS and indirect transactivation of both
WUS and STM via CUP-SHAPED COTYLEDON (CUC)
1/2 (Supplementary Table 1 and Figure 1). In Arabidopsis,
overexpression of PLT5/7 enables cytokinin-independent shoot
regeneration, although at a very low rate (Kareem et al., 2015).

BABY BOOM (BBM) overexpression confers the ability
for cytokinin-independent in vitro somatic embryogenesis in
Arabidopsis (Boutilier et al., 2002). In contrast, expression of
a BBM homolog in tobacco enhanced regeneration via shoot
organogenesis without affecting embryogenesis (Srinivasan et al.,
2007, 2011).

Effectiveness of Developmental Genes in
Non-model Species
WUS and related genes have been found to be effective
at promoting regeneration in crop and forest species.
Overexpression of the rice homolog of WUS in seedlings

was found to cause de novo organogenesis of shoots in rice
(Kamiya et al., 2003). Populus tomentosa transformed to
overexpress any of four WUSCHEL or WUSCHEL-ASSOCIATED
HOMEOBOX orthologs showed increased adventitious rooting
(Liu et al., 2014; Li et al., 2018). Overexpression of AtWUS led
to increased embryo and callus formation in vitro in coffee
(Arroyo-Herrera et al., 2008), increased embryo formation in
cotton (Bouchabké-Coussa et al., 2013), and enables in vitro
ectopic embryogenesis for the otherwise completely recalcitrant
Capsicum chinense (Solís-Ramos et al., 2009). Overexpression
of homologs of WUS, or WUS in combination with BABY
BOOM (BBM), enhances in vitro transformation and shoot
regeneration in a variety of monocots, including rice, sorghum,
and maize. Several completely recalcitrant maize inbred lines
became responsive to transformation and regeneration when
overexpressing either WUS or BBM homologs (Lowe et al., 2016;
Mookkan et al., 2017).

STM and related genes are also active in crop and forest
species. Expression of STM/Knotted-1 orthologs from apple or
maize enhanced shoot regeneration from leaf explants in the
absence of exogenous cytokinins in tobacco, though were not
effective in plum under the conditions studied (Srinivasan et al.,
2011). In citrus, expression of maize Knotted-1 enhanced in vitro
regeneration after transformation, with rates varying widely
among varieties (Hu et al., 2016). In the gymnosperm forest tree
Picea abies (Norway spruce), overexpression of a KNOTTED-
1 ortholog similarly promoted in vitro somatic embryogenesis
(Belmonte et al., 2007).

Other DGs can also stimulate regeneration in non-model
species. Overexpression of maize LEC in wheat and maize
enabled efficient transformation without the use of selectable
markers (Lowe et al., 2002). AtLEC1 overexpression in white
spruce, however, had no effect on somatic embryogenesis
(Klimaszewska et al., 2010). Overexpression of an ESR1 ortholog
led to a doubling of shoot regeneration during transformation
in hybrid poplar (Yordanov et al., 2014). Overexpression of a
BBM ortholog in Capsicum annuum (sweet pepper) enabled
in vitro somatic embryogenesis and efficient transformation of
a genotype which was previously recalcitrant (Heidmann et al.,
2011). In P. tomentosa, expression of a Brassica homolog of BBM
led calli to develop somatic embryos, which is otherwise rarely
seen with poplar regeneration systems (Deng et al., 2009).

Strategies for Using Developmental
Genes for Transformation Improvement
When overexpressed during vegetative development, BBM,
WUS, LEC1 and other genes can promote various regeneration
pathways, but then unsurprisingly lead to defects in further
development, such as disorganized shoot and floral meristems
(Gallois et al., 2002), infertility, and shoot necrosis (Lowe et al.,
2016). Clearly, to be useful their expression must be carefully
controlled in strength and timing. Three main options exist
for targeted expression of transgenes: induced expression using
external stimuli such as chemical or physical inducers (e.g.,
heat or drought); controlled excision of the genes from the
genome using similar inducer options; and use of promoters

Frontiers in Plant Science | www.frontiersin.org 3 October 2018 | Volume 9 | Article 1443

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01443 October 1, 2018 Time: 16:23 # 4

Nagle et al. Innovation in Tree Transformation

whose innate expression pattern closely resembles that of native
meristematic genes, thus will have much attenuated expression
after meristems or embryos are initiated. More complex options
include gene editing to engineer the promoters of native DGs
to be inducible, or to add miRNA-resistance mutations into
the genes’ transcribed regions, thus achieving some level of
derepression without affecting genomic context and other local
regulatory cues (Zhang et al., 2017). Heat-shock, drought-stress,
and meristematic promoters have been shown to be effective for
driving Cre excision of BBM and WUS orthologs in monocots
(Lowe et al., 2016, 2018; Mookkan et al., 2017), and a heat-
shock promoter was used to drive Flp-FRT excision of BBM
after BBM induced somatic embryogenesis in P. tomentosa (Deng
et al., 2009). Clearly many options exist, but the choice of the
most effective DGs or combinations thereof, as well as gene
expression/removal options, need to be explored in parallel for
specific crop and forest tree species.

In vitro culture and selection conditions will strongly affect
the value of DGs for promoting regeneration. For example,
plant hormones added to culture media can mask or help to
amplify DG effects, depending on the specific taxa, tissues, and
hormone species and concentrations, and duration of treatments
(Hill and Schaller, 2013; Irshad et al., 2018; Kumar et al., 2018).
With highly effective regeneration, use of selective agents such as
antibiotics can be reduced or eliminated entirely, greatly reducing
physiological stresses that retard regeneration (Mookkan et al.,
2017; Lowe et al., 2018). The optimal combinations, and their
impacts on transformation rate as well as chimerism in the
resulting plants, can only be determined by trial and error with
specific taxa, and may need to be customized to specific genotypes
in highly genetically variable and recalcitrant species such as most
forest trees.

Future improvements to the system are likely to include
growing use of multiple DGs, in part to complement and balance
their differing activities, and to make DG “reagents” effective
across a wide range of taxa. For example, strong overexpression
of WUS or upstream ESR1 without sufficient balancing activity
of the STM pathway in the PZ has reportedly led to failure of PZ
cells to differentiate (Banno et al., 2001; Ikeda et al., 2006), and to
necrosis of shoot primordia (Lowe et al., 2016). Studies of gene
combinations have to date received little attention, but may lead
to major improvements in transformation efficiency.

TOWARD THE DEVELOPMENT OF IN
PLANTA TRANSFORMATION METHODS
IN FOREST TREES

A major limitation to genetic transformation is the need to
develop in vitro propagation and regeneration systems, which for
many plant species are very time consuming and require a high
level of technical expertise. Moreover, it must be customized for
each new genotype and species, with many remaining recalcitrant
to regeneration and/or transformation. As a result, methods that
bypass the need for in vitro systems are highly desirable.

In planta transformation techniques take advantage of natural
biological processes to produce and regenerate transgenic plants

(Figure 2), and are thus in theory applicable to a large panel
of genotypes and species. The target tissues are diverse, and
can include secondary meristems. The induced somatic sector
analysis (ISSA) approach is an example of what can be achieved
in various tree species (Pinus, Eucalyptus, Populus, Spokevicius
et al., 2005; Van Beveren et al., 2006). A “cambial window” is
cut with a sharp razor blade through the bark to get access
to the cambial/young xylem tissues, which are then inoculated
with an Agrobacterium tumefaciens solution. After wound closure
and cambium reestablishment, the transformed cells divide
and differentiate, producing somatic sectors of transformed
cells. Within a few months, and without any in vitro steps
or complex manipulations, it is possible to analyze transgenes
and promoters directly in the woody stem tissues of trees by
comparing transformed sectors with adjacent non-transformed
ones (Hussey et al., 2011; Creux et al., 2013; Baldacci-Cresp et al.,
2015). ISSA has a great potential to study cell fate and pattern
formation during secondary growth and xylogenesis, thanks to
the development of microscope-derived techniques like Raman
or ATR-FTIR, which can give spectroscopic information at the
cellular or cell wall level. Although very useful for research, ISSA
can, however, not be used to regenerate transgenic plants.

To this end, other tissues can be targeted for transformation,
including vegetative meristems protected in axillary or apical
buds, as was investigated in sugarcane (Mayavan et al., 2015),
Populus (Yang et al., 2010), and grapevine (Fujita et al.,
2009). A. tumefaciens was the DNA vector and reached the
meristems after mechanical wounding, possibly complemented
by sonication or vacuum infiltration (Mayavan et al., 2015). This
approach required an efficient adventitious rooting system to
regenerate plants from transgenic shoots excised from mother
plants. However, repeated rounds of selection generally failed to
avoid chimeric transgenic shoots.

To avoid chimeras, some protocols have been developed on
germinating seeds or seedlings, with the goal of reaching apical
meristems as early as possible in plant development. Indeed, these
meristems will ultimately give rise to reproductive meristems that
may produce transformed germ cells. Several attempts were at
least partly successful in producing transgenic T1 plants from T0
transformed chimeric embryos or seedlings using A. tumefaciens
(Lin et al., 2009; Shah et al., 2015; Ahmed et al., 2018) or particle
bombardment (Hamada et al., 2017). However, this method
would be difficult to apply in forest trees as the elimination
of chimeras usually requires sexual reproduction to the T1
generation, requiring a long wait for flowering.

In order to speed up the process, while ensuring the generation
of non-chimeric plants, some authors targeted reproductive
meristems before flowering and fertilization. The rationale
was to transform future germ cells. Arabidopsis flowers were
successfully transformed by A. tumefaciens vacuum infiltration
(Bechtold et al., 1993); Clough and Bent (1998) further improved
this method, and found that dipping of flowers was efficient
enough as long as a surfactant was also used. Even though the
overall efficiency was less than 1%, the method remained viable
thanks to the high fertility and small size of Arabidopsis, enabling
hundreds to thousands of germinating seeds to be efficiently
screened using selectable markers. This method was developed
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FIGURE 2 | Virtual plant showing the diverse organs/meristems targeted by in planta transformation. (A) Primary meristems in vegetative buds leading to the
production of transgenic shoots after agro-inoculation. (B) Primary meristems in germinating seeds or seedlings leading to T0 chimeric plants and T1 transgenic
plants. (C) Reproductive cells in floral buds or flowers leading to T0 transgenic plants. (D) Cambium secondary meristems leading to transformed wood sectors.

with limited success in other species (Raphanus sativus, Curtis
and Nam, 2001; Brassica napus, Qing et al., 2000; Medicago
truncatula, Trieu et al., 2000). An alternative method is to target
pollen grains using methods such as sonication to penetrate
pollen apertures in a DNA-containing sucrose solution. Southern
analyses demonstrated the successful transfer of transgenes to
progenies by pollination in sorghum (Wang et al., 2007), Brassica
juncea (Wang et al., 2008), and maize (Yang et al., 2017). Pre-
treatment of pollen grains by aeration (e.g., 20 min at 4◦C)
increased pollen viability, mitigating a common adverse effect of
sonication (Yang et al., 2017). Zhao et al. (2017) have recently
investigated an innovative method by which DNA was delivered
to pollen via magnetic nanoparticles; stable transformants in
cotton, pepper, and pumpkin were generated. Pollen-mediated
transformation could be easily tested for forest trees as pollination
for controlled crosses or seed production is very common as part
of conventional breeding. However, to be feasible and conform
to most regulatory requirements for containment of transgenic
pollen, such crosses would need to be carried out on detached or
grafted floral branches in greenhouses, which is possible only for
a limited number of forest tree species.

Unfortunately, most of the procedures described above
required a high level of technical expertise, as they were
hardly transferred to other laboratories. The only exception
is Arabidopsis floral dip, which has been used in numerous
laboratories worldwide. Could in planta techniques such as this
be tailored for forest trees? Several convergent studies have
shown that the ovules, not the pollen, are the direct targets
for transformation through floral dip. It has been shown that
manual outcrossing experiments produced transgenic progenies
only when A. tumefaciens was applied on pollen recipient plants,
not on pollen donor plants (Ye et al., 1999; Desfeux et al., 2000).
Bechtold et al. (2000) elegantly reached the same conclusion
using a genetic approach.

Floral dip has been shown to give rise to transgenic
seedlings with genetically independent insertions that are
typically hemizygous (carrying the T-DNA at only one allele of
a given locus) (Bechtold et al., 1993). The transformation rate
is very dependent on the flower developmental stage (Desfeux
et al., 2000), with the optimal stage being when the gynoecium
is still open (Irepan Reyes-Olalde et al., 2013), thus allowing
agrobacteria to penetrate and transform the ovule primordia.

Frontiers in Plant Science | www.frontiersin.org 5 October 2018 | Volume 9 | Article 1443

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01443 October 1, 2018 Time: 16:23 # 6

Nagle et al. Innovation in Tree Transformation

The CRABS-CLAW mutant, which maintains an open
gynoecium, gives a sixfold enhanced rate of transformation
(Desfeux et al., 2000). Therefore, access by Agrobacterium to the
locule of the ovule appears to be critical for the transformation.
Trees are perennial species, where flower initiation takes place
the year before flowering, thus injection of the Agrobacterium
solution into female floral buds before flowering at a stage where
the gynoecium is still open needs to occur weeks to months before
seed release. However, trees also produce very large number of
seeds, thus the in planta approach, if it can be optimized and
applied to many buds at the right times, together with an efficient
selection system for germinating seeds, may be realistic option
for some tree species.

CONCLUSION

In summary, both DG and in planta approaches to
transformation hold promise to solve major problems in plant
and tree transformation. DGs appear to hold most promise
where a basic in vitro regeneration system is in place, thus
might benefit from a large elevation of transformation efficiency
using an established transformation pathway. It has to date
been most effective in species with embryogenic rather than
organogenic regeneration systems. In planta systems hold
most promise where in vitro approaches are extremely difficult
or impossible, thus alternate pathways are required. It will
also be most easily pursued as part of a large-scale breeding
program, enabling large numbers of floral buds to be treated and
seedling populations screened for transformation and chimerism.
In planta transformation of cambium and axillary/apical buds
has been successful, but is prone to chimerism; research on

germline transformation (i.e., transformation of mother cells
within floral buds and embryos within seeds) may help to reduce
this problem. In planta and DG overexpression approaches to
efficient transformation might not be mutually exclusive; research
is warranted to elucidate the potential for DGs to enhance
in planta systems. Given the importance of regeneration as a
bottleneck to transformation and gene editing of forest trees in
research and application (Chang et al., 2018), acceleration of
research using both approaches is warranted.
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