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The advent of PCR-based molecular markers has led 
to a rapid expansion in studies describing the levels 
and distribution of genetic variation among 
populations at the DNA level. Randomly amplified 
polymorphic DNA (RAPD; Williams et al. 1990) and 
amplified fragment length polymorphism (AFLP; Vos 
et al. 1995) markers are now commonly used in 
population genetic studies (e.g., Aagaard et al. 1998; 
Isabel et al. 1995; Liu and Furnier 1993; Mosseler et 
al. 1992; Peakall et al. 1995; Szmidt et al. 1996; 
Travis et al. 1996; Wu et al., in press). However, 
these PCR-based markers have limitations compared 
to allozymes, which had been the prevalent means for 
population studies prior to the use of PCR. At the 
majority of RAPD and AFLP loci the dominant allele 
masks the presence of the null allele in heterozygotes 
when assaying diploid tissues (e.g., about 97%-98%; 
Krutovskii et al. 1998), thus sampling variance for 
dominant allele frequencies is typically greater than 
that for codominant alleles (Lynch and Milligan 
1994). The frequencies of null and dominant alleles 
are inferred from the frequency of null allele 
homozygotes; the precision of their estimation thus 
depends on mating system assumptions and is 
strongly affected by the sample size. Empirical 
studies have also suggested that dominant markers 
can bias estimates of genetic diversity and 
differentiation among populations (e.g., Isabel et al. 
1995; Szmidt et al. 1996). 

Although RAPD markers have proved to be useful 
for population studies, and their gross patterns of 
diversity usually agree with that of allozymes, the 
levels of genet 

ic variation, differentiation, and fine-scale genetic 
structures often differ (e.g., Baruffi et al. 1995; 
Dawson et al. 1996; Heun et al. 1994; 
Lann(!r-Herrera et al. 1996; Latta and Mitton 1997; le 
Corre et al. 1997; Liu and Furnier 1993; Peakall et al. 
1995; Puterka et al. 1993). To help assess whether 
these differences are biological or a simple 
consequence of the dominance and biallelism of 
RAPD and AFLP markers, we developed a 
dominance simulation program, DOMSIM, that 
transforms codominant population data into a biallelic 
dominant dataset. The program then estimates 
population genetic statistics with which dominant and 
codominant markers can be directly compared. We 
use data from a widespread North American conifer, 
Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco], 
and three California closed-cone pine species to 
illustrate the program's function. The test simulation 
suggests that dominant biallelic markers, such as 
RAPDs, can strongly underestimate population 
diversity but can still reasonably estimate population 
differentiation (G5,), if sample sizes are larger than 
about 30 individuals. 

replacement within the first sampled subpopulation of 
n individuals (bootstrap resampling). Population 
genetic parameters (HS, HT, and GS,) are calculated for 
each cycle of resampling in three ways. First, for a 
codominant dataset, calculations are made considering 
all alleles and genotypes present in the subpopulations. 
Second, the same subpopulations and data are used to 
simulate a dominant biallelic dataset by randomly 
selecting one allele as dominant, with the rest treated 
as recessive to it. The synthetic null allele frequency is 
then calculated from the null homorygote frequencies 
assuming HardyWeinberg equilibrium. Average 
parameters and their variance are calculated for each 
set of S subpopulations. Gene diversity is evaluated 
using HS and HT, either unmodified (Nei 1973) or 
modified (Nei and Chesser 1983) for the sample size. 
Genetic differentiation is evaluated via ew (Weir and 
Cockerham 1984) and G, parameters that are either 
unmodified (Nei 1973), modified for the sample size 
(Nei and Chesser 1983), or modified for both the 
sample size and population number (Nei 1986). 
Finally, null allele frequencies are corrected for 
dominance using Lynch and Milligan's (1994) 
equation 2a, and their asymptotically unbiased 
estimate of FS, recommended for dominant markers is 
also calculated following equation 14a. 
 
Installing and Running the Program 

The program DOMSIM is written in FORTRAN-77 
(simulation routines) and in LabWindows CVI 
(interface routines). The source code file, domsimd.f, 
was compiled using Microsoft FORTRAN Power 
Station Compiler version 1.0. DOMSIM runs on IBM 
PCs and compatibles under MS Windows 95 and NT 
for 32-bit operating environments. To install the 
program run the compressed self-extracting file 
domsimpr.exe which can be downloaded from the 
web site http://www.fsl.orst.edu/tgerc/ protocol.htm. It 
will automatically decom 

Program Functions
The program DOMSIM uses multiallelic datasets 
with a maximum number of six alleles per locus for 
which population allele frequencies are defined. 
Assuming HardyWeinberg equilibrium and no 
linkage among loci, the program generates N basic 
populations (Nm_ = 20) of up to 1,000 individuals 
each with multilocus genotypes that maintain the 
specified allele frequencies within populations. A 
total of S subpopulations (Smu = 400) of n individuals 
(n = 10-200) are then drawn with replacement for 
each of the N populations. The sampling is done in 
two different ways: by sampling subpopulations of 
size n with replacement directly from the initially 
generated basic population, and by resampling 
subpopulations of size n with 

499 



press five files domsimd.f, domsim.001, 
domsim.002, read.me, and setup.exe. Next, run 
the setup file and follow the instructions on your 
screen during installation. Run the program by 
either clicking the icon or executing the program 
file domsim.exe. A read.me file contains 
additional instructions for installing and running 
the program. 
 
Input and Output Files 
The input format is an ASCII file similar to 
GeneStat input files (Lewis 1994), but does not 
require population, locus, and allele names, and 
there should be no empty lines. An example 
(sample.dat) and brief help, which explicitly 
explains an input file structure, are provided with 
the program. The output file has all the 
parameters calculated for each resampled and 
bootstrap set, their average values, and standard 
deviations. 

Examples of Simulation Based on 
Allozyme Data in Douglas-fir and 
California Closed-Cone Pines 
In order to facilitate comparisons between 
dominant and codominant markers, and to help 
understand the effects of RAPD dominance and 
biallelism on our studies of genetic diversity and 
differentiation in Douglas-fir (Aagaard et al. 
1998) and the California closed-cone pines (Wu 
et al., in press), we simulated dominance and 
biallelism in these two allozyme datasets (Li and 
Adams 1989; Wu et al., in press). The first 
allozyme dataset included six populations of three 
races of Douglas-fircoastal, north interior, and 
south interior-with two populations per race. The 
second one included four, five, and three 
populations of Pinus attenuata, P. muricato, and 
P. radiata, respectively. These populations are 
described in detail elsewhere (Aagaard et al. 
1998; Wu et al., in press). From allozyme allele 
frequencies within populations we generated 
simulated populations of 1,000 individuals each, 
and a total of 400 subpopulations of n individuals 
were drawn with replacement from each of the 
populations. The program also performed 400 
bootstrap resamplings using a subpopulation of 
size n. Population genetic parameters (H5, H,, G57, 

9w, and FST) were then calculated for each set of 
400 subpopulations in the three ways described 
above. We varied the number of individuals (rt) 
within the subsamples from 10 to 200 to bracket 
the range of sample sizes that might reasonably 
be employed in population studies, and the sam- 

Figure 1. Levea of diversity and differentiation for codominant, multia!lelic allozymes versus biailelic, dominant markers, as simulated from an 
allozyme dataset from Douglas-fir studied with varying sample sizes. Standard deviations (error bars) were calculated from the variance among 
400 bootstrap subsamples and represent the var;ance due to res3rnpiing of individuals at each level of sampling from the master population of 
1.000 individuals. The arrow shows the population sample size between 30 and 40 needed to eliminate the tendency for overestimation of 
population differentiation caused by dominance and biallelism. 

likely to be underestimated by dominant biallelic 
markers approximately twofold regardless of 
sample size. 

When 30 or more diploid individuals per 
population were sampled, there was little effect 
on differentiation estimates (GST, 6„, 

pie size of 30-50 trees per population that was 
used in our RAPD studies (Aagaard et al. 1998; 
Wu et al., in press). The results of the 
simulations are summarized in Figures 1 and 2. 
The simulations showed that diversity 
measurements (HS and H,) were
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interpret the results of population studies with 
dominant markers. 
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