

Efficacy of RNAi and CRISPR Containment Technologies in Poplar

Amy L. Klocko, Estefania Elorriaga, Haiwei Lu, Cathleen Ma, Anna Magnuson, Glenn Howe, and Steven H. Strauss Department of Forest Ecosystems and Society, Oregon State University, Corvallis OR, Amy.Klocko@oregonstate.edu

Project Summary

The dispersal of transgenes from genetically engineered poplars presents substantial challenges to biotechnology regulatory bodies. This is because they are weakly domesticated, have wild relatives, and pollen or seeds can spread widely. However, plantation trees are vegetatively propagated, making fertile flowers unnecessary for commercial use. Thus, genes that induce complete sterility could provide strong and simple mitigation of dispersal, simplifying regulatory decisions. Sterility, and ecological impacts of floral developmental genes as tools for mitigating or preventing transgene spread. We have two study populations of transgenic poplar trees. The first is a field plantation used to test floral genes by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Cas system (CRISPR-Cas) mutagenesis. The field plantation of transgenic Populus includes 19 different constructs in three poplar genotypes (2 female, one male) that modify the expression of poplar orthologs of conserved floral development genes, including LEAFY (LFY), AGAMOUS (AG), and APETALA1 (AP1). Some constructs are designed to target two to three genes simultaneously. We screened all trees for the presence of floral buds, as well as alterations in floral morphology. We found that RNAi targeting LFY (Pt-LFY:RNAi) showed that the flowers from some of these events were sterile, and lacked stigmas or ovules. Despite this severe reduction in reproductive growth, Pt-LFY:RNAi trees had robust vegetative growth, Pt-LFY:RNAi trees had robust vegetative growth, and were morphologically similar to control trees. A paper presenting this work is about to be published in Nature Biotechnology (September issue). Based on the results of our field study, we selected the AG and LFY genes as targets for direct modification by CRISPR-Cas nucleases. Compared to other sterility methods, the mutations of essential parts of coding regions). We are testing the mutation efficiency of CRISPR-Cas on the single-copy LFY gene and the duplicated AG gene We produced six CRISPR and one empty vector control (Cas9 only) construct and produced approximately 120 transgenic showed an overall mutations. Of 248 events analyzed for changes in the AG1 gene, 60% had mutations, and 6% of events had homozygous mutations. These high rates of gene targeting means that CRISPR-Cas technology is a very efficient means for genetic containment of poplar, and that these same genes can be efficiently targeted using CRISPR-Cas technology. Pending continued funding of this research, the effects of these mutations on vegetative growth and flowering in male and female trees will be studied in the field in upcoming years, hopefully leading to a ready-to-deploy containment technology.

Field Test of Floral Modification by RNAi of Floral Development Genes

We selected a variety of poplar genes from the floral development pathway (see Table 1). We created 22 constructs targeting floral development genes, both singly and in combination. These were transformed into three poplar clones, one male and two female. We planted 4-25 independent transformation events per construct per clone. On average, we planted 4 ramets (trees) per event. Pairs of ramets were randomized into two blocks per clone. OvExp = over expression, DNM = dominant negative mutation, RNAi = RNA interference.

Gene name(s)	Location(s) in floral pathway	Poplar gene(s) from Phytozome	Construct Type(s)
FPF1 (FPFL1, FPFL2)	Input from GA pathway	Potri.006G276100, Potri.018G005200	RNAi
AGL20 (SOC1)	Signal integration	Potri.014G074200	RNAi
FT (FT1, FT2)	Signal integration	Potri.010G179700, Potri.008077700	RNAi
AGL24	Signal integration Meristem determination	Potri.002G105600	OvExp, RNAi
LFY	Meristem determination	Potri.015G106900	RNAi
SVP	Meristem determination	Potri.007G010800	OvExp
AP1 (AP1-1, AP1-2)	Meristem determination Floral organ determination	Potri.008G098500, Potri.010G154100	DNM, RNAi
AP3	Floral organ determination	Potri.005G118000	RNAi
AG (AG-1, AG-2)	Floral organ determination	Potri.004G064300, Potri.011G075800	DNM, RNAi

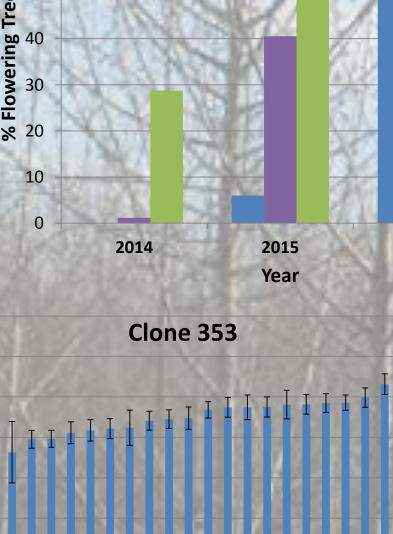
All Poplar Clones Flowered Well in 2016 and Are Growing Well Across Constructs and Clones

353 717 6K1

The field plantation was established in 2011 as small rooted ramets. All trees were scored for flowering every spring; the first flowers were observed in 2014. Examples of representative flowers for each clone are shown below. In spring 2016 all three clones had flowering rates of 42.8-59.6%.

Male clone 353 P. tremula x tremuloid 1,039 trees

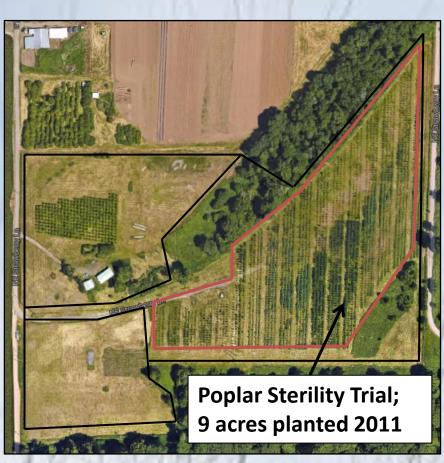
Female clone 717 P. tremula x alb 1,137 trees


Tree size was measured yearly for all trees in the plantation. Bars show the least square means of trunk diameter after spatial analysis to account for plantation site variability, standard error of the means is shown. Control plants for 6K10 were small at initial planting. Only the RNAi-FT construct appears to significantly inhibit growth based on preliminary analyses and field observations.

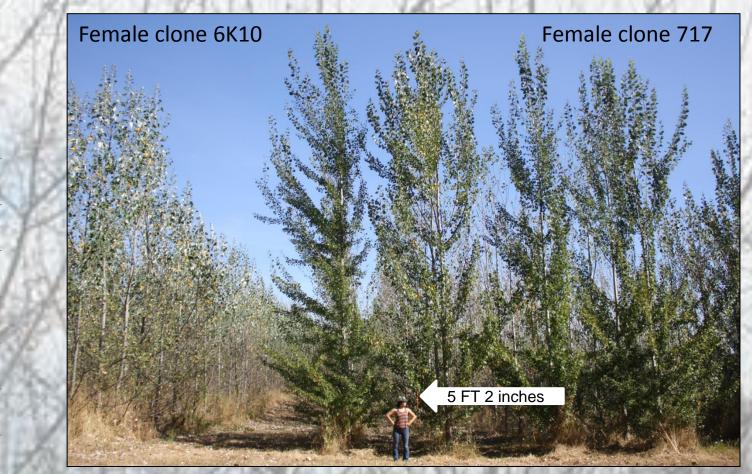
5000

4000

a 3000



Tree Flowering Over Time


RNAi of LFY and/or AG Led to Reductions in Female Fertility

control	Targeting LFY	Targeting AG	
control	Pt-LFY:RNAi	Pt-AG:RNAi (mar) Pt-AG:RNAi Image:	Seven of our RNAi with altered floral shown here). All o designed to target sometimes in com genes. Constructs catkins with no ext Constructs targetin replicated carpels missing ovules.
North States	control	Targeting LFY	Targeting
Carpel	ovule	s () () () () () () () () () (Is biological and the second sec

Microscopic analysis of control catkins showed that the carpels contained well-formed ovules, which later developed into seeds. By contrast, catkins with targeted LFY were very small, and lacked externally visible carpels; no ovules were detected in these carpels. Catkins with targeted AG had carpels formed inside of other carpels, giving them a distinctive replicated appearance. Sectioning of these carpels showed that some events lacked ovules entirely, thus will be fully sterile.

Arial view of the plantation site. Fences are indicated by red and black lines.

Overall survival for all trees to date was nearly 98%. All three clones are growing vigorously in most parts of the field. Image from August 2016.

Clone 6K10

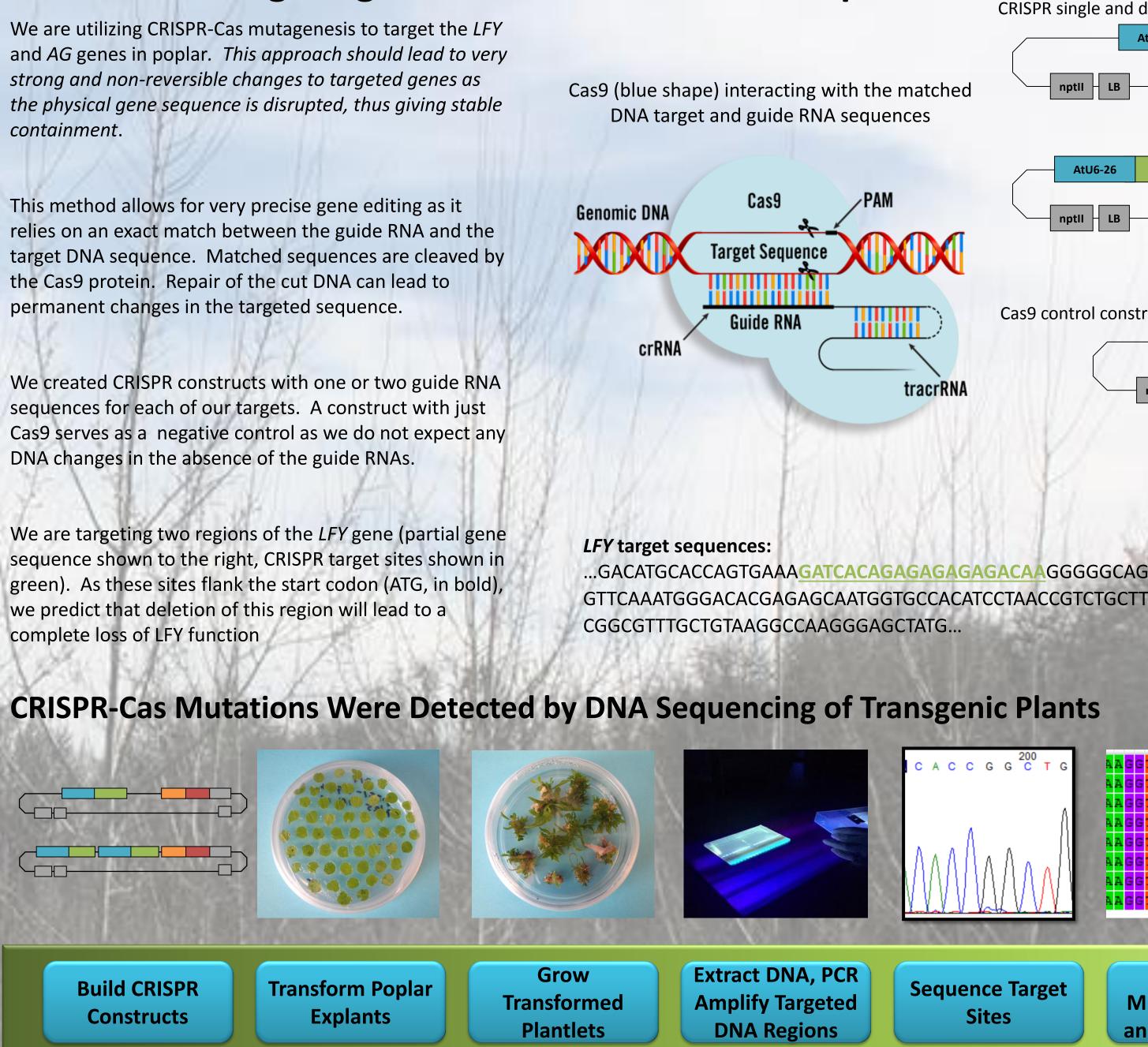
TITITITITI

constructs had trees morphology (three are of these constructs were et LFY and/or AG, bination with other floral s targeting just LFY led to ternally visible carpels. ng AG led to catkins with within carpels, often

2016

Clone 717

Female-sterile RNAi-LFY trees grew as well as control trees (left panels). A new field study will examine if LFY-RNAi might affect growth rate. Planting crew in July 2016.


Acknowledgements

This project is supported by Biotechnology Risk Assessment Grant Program competitive grant no. 2011-68005-30407 from the USDA National Institute of Food and Agriculture and the Agricultural Research Service. National Institute of Food and Agriculture and Agricultural Research Service, National Science Foundation I/UCRC Center for Advanced Forestry (grant 0736283), USDA-BRAG (grant 2010-33522-21736), USDA-IFAS (grant OREZ-FS-671-R), and the TBGRC industrial cooperative at Oregon State University.

d Hardwood Biofuels Northwest

CRISPR-Cas Targeting of LFY and AG Genes in Poplar

containment

CRISPR-Cas Mutagenesis Efficiently Targeted Poplar Floral Genes

Analysis of CRISPR events targeting LFY in clone 717 shows a high r (12%) of bi-allelic, homozygous gene mutation. Similar results obtained for targeting of AG gen Selected events are undergoin transformation for early floral induction as well as propagatio natural flowering under field conditions. Note the absence mutation in the Cas9-only cont Transformation of constructs in clones 6K10 and 353 is underw

Table 2: Results of CRISPR targeting of LFY in clone 717

Construct/target	# events sequenced	Type of mutation	# of events (%)
e		Bi-allelic	16 (12%)
Single LFY1C	131	Heterozygous	93 (71%)
		None	22 (17%)
		Bi-allelic	10 (22%)
Single LFY3C	46	Heterozygous	33 (71%)
realized		None	3 (7%)
32.00		Bi-allelic	4 (5%)
Double LFY1C-LFY3C	75	Heterozygous	66 (88%)
1000		None	5 (7%)
Cas (empty vector)	14	None	14 (100%)
Annual Contraction of the International Contractional Contra		Bi-allelic	30 (12%)
Total (w/out control	252	Heterozygous	192 (76%)
-if a market		None	30 (12%)

Biallelic mutations

С	A	T	G	С	A	С
C	A	Τ	G	С	A	С
С	A	T	G	С	A	С
С	A	T	G	С	A	С
С	A	Т	G	С	A	С
С	A	Т	G	С	A	С
С	A	T	G	С	A	С
С	A	Т	G	С	A	С
		CA CA CA CA	CAT CAT CAT CAT CAT CAT	CATG CATG CATG CATG CATG CATG	CATGC CATGC CATGC CATGC CATGC CATGC	CATGCA CATGCA CATGCA

Examples of bi-allelic, targeted by a single gu numbers on the right Large mutations (not : the double guide RNA

Summary

Trees for all constructs are growing well in our 9 acre ex constructs should have a majority of trees flowering in RNAi targeting of LFY and/or AG strongly decreases fert and does not appear to negative affect vegetative grow CRISPR-Cas modification of floral development genes is stable disruption of gene function, and thus reliable genetic containment. A field test of growth rate and flowering is planned to begin in 2017.

ouble ge U6-26	ne targetin	g constru	cts 2x355	hCas9	tnos	_
		L		incluss		
					RB	_/
	AtU6-26	sgRNA 2 –	2x35S	hCas9	thos	
sgRNA 1	At00-20	SGRINA Z	28555	iicas9	tnos	
		1.72			RB	
					1 1	ᆀ
uct		17/1			1	
	2x35S h	Cas9 tnos	D(f)		-	
nptll – LB		F	RB		100	
		in the	ALA.		3	
	in in the					
100	196					
2000	ATGGATCO	CGGAGG	СТТТСА	ACGGCG	GAGTTT	
GAAATO	GT <u>OCCC</u>				GGCTG	
		80	12			
IGGAGAT Iggagat	CAAGCGGA C <mark>T</mark> AAGCGG					
GGAGAT GGAGA-						
GGAGA						
GGAGAT	C					
S I D S			80.22	10000		
Detern utation				ents for wering		
	uencies	-		Studies		
199	8. NI	15311	19 2			18
the LFY	' gene	100	612	15		
CAGTGA	AAGATCAC	AGAGAG	AGAGAC	<mark>A A G G G G</mark>	G <mark>CA</mark> G	
CAGTGA CAGTGA	AAGATCAC AA <mark>G</mark> A <mark>T</mark> CAC	AGAGAGI A <mark>GAG</mark> AGI	AGAGAC A <mark>G</mark> A <mark>G</mark> -C	A A G G G G A A G G G G	GCAGX3 GCAGX2	
CAGTGA			A <mark>gag</mark> AgaC	A A G G G G A A G G G G	GCAGX2 GCAGX8	
CAGTGA	A A <mark>G</mark> A <mark>T</mark> C A C	AGAGAG	c	A <mark>A </mark> G G G G A A G G G G	GCAGX1 GCAGX1	
CAGTGA	AAGATCAC	AGAGAG	GALAT		GGCA x1	
	100	le RNA tar		-	1	
	gous muta in <i>LFY</i> .D					ents
	how many		and the second second			h
construc	were obse ct.	i veu in e	vents l			1
and the second second	ental pla	ntation	, and	nearly	all	
2017. ility in	two fem	ale cloi	nes sti	udied 1	to date	e.,
th or m	norpholo	ogy.				192
efficie	nt and s	hould le	ead to	strong	gand	