Exploring Nature's Transformation Toolbox

Screening Wild Agrobacterium Strains to Improve Transformation and Regeneration in Woody Plants

ZACHARY M. HEINHOLD

HEINHOLZ@OREGONSTATE.EDU

PLANT BIOTECHNOLOGY LABORATORY

FOREST ECOSYSTEMS & SOCIETY (FES), COLLEGE OF FORESTRY

PAG Conference | Forest Tree Session | Jan. 12, 2025

Gene editing and genetic engineering: big technologies for improving plants

- Plant biotechnology heavily invested in
 R&D
 - CRISPR/Cas systems use and research
- > Insert desirable traits rapidly into plants
- Challenges with current transformation techniques

Preceon[™] Smart Corn System: Bayer Crop Science; edited gibberellin 20 oxidase

Agrobacterium Mediated Transformation (AMT): the most popular way to transform plants

Pros:

- Ease of use
- Promotes regeneration after transformation
- Robust with many common molecular cloning techniques

Cons:

- Many species & genotypes recalcitrant to transformation
- Organogenesis after transformation limited in many species

Plant Cell

Agrobacterium spp.

virgenes pTi

T-DNA

Altrustic transformation with "shooty" 82.139 strain

Limited plasmid type diversity for currently used lab strains

ANNUAL REVIEW OF PHYTOPATHOLOGY Volume 61, 2023

Virulence and Ecology of Agrobacteria in the Context of Evolutionary Genomics

Alexandra J. Weisberg¹, Yu Wu^{2,3,4}, Jeff H. Chang¹, Erh-Min Lai^{2,3,5}, and Chih-Horng Kuo^{2,3,5}

About 50 years of Agrobacterium research at OSU Strategy to Utilize Agrobacterium Diversity -Promoting Woody Plant Transformation & Regeneration

Screen 100 diverse Agrobacterium strains

 Differences in transformation & regeneration

Mechanistic study of transformation and regeneration

- Host defense interaction
 - vir gene expression

Improvements to Agrobacterium

- disarm new strains
- novel T-DNA cloning as regeneration agent
- test in other plant species

Screening 100 diverse Agrobacterium strains using high throughput phenomics

Insert GFP or RUBY reporter genes into the Agrobacterium

- Hybrid poplar (*easy*)
- Black cottonwood (moderate/hard)
- Eucalyptus (hard)

- Necrosis
- Transformation
- Regeneration

Recalcitrant species & genotypes display high rates of necrosis following AMT

Using RUBY reporter to visually screen transformation rates

Quantifying necrosis - machine learning in our high throughput phenomics pipeline

Preliminary Results

Necrosis shows strong strain to genotype interaction

Strain 12 outperforms C58 in hybrid poplar

Several wild strains outperform C58 in Eucalyptus

Strain 12 shows high rates of transformation in seven Eucalyptus genotypes

8-37% RUBY callus formation among all seven Eucalyptus genotypes tested

Strain 12 shows high rates of transgenic RUBY callus in Hops

Some strains showed improved regeneration – a key obstacle

Summary

>Many plant species and genotypes are very difficult to transform – new technology needed

>Very little natural diversity in Agrobacterium has been utilized to date

>Plant defense responses including necrosis in response to Agrobacterium is often great

Early screening has already identified new wild strains with improved transformation and regeneration rates

Thank you

Steve Strauss Professor FES

Cathleen Ma Transformation & Greenhouse Experiments

Kate Peremyslova Transformation Experiments

Scientific assistance

Colette Richter (FRA) Victoria Conrad (Undergraduate) Abigail Lawrence (Undergraduate) Michael Nagle (LIBD) Anthony Marroquin (Greenhouse Manager) Robert Alba (Lab Manager)

Greg Goralogia Postdoc

Chris Willig Postdoc

Alexandra Weisberg Assistant Professor BPP

This work is supported by the U.S. National Science Foundation - Plant Genome Research Project (award no. 2424938), the GREAT Trees Cooperative & by the Wessela Graduate Fellowship at Oregon State University

Thank you! Questions?

Connect with the lab

My email: <u>heinholz@oregonstate.edu</u>

Steve Strauss: steve.strauss@oregonstate.edu

