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Abstract
Because of the limitations inherent in conventional breeding of trees and clonally propagated crops, gene editing is of great interest.
Dozens of published papers attest to the high efficiency of CRISPR-based systems in clonal crops and trees. The opportunity for
“clean” edits is expected to avoid or reduce regulatory burdens in many countries and may improve market acceptance. To date,
however, nearly all studies in trees and clonal crops retained all of the gene editingmachinery in the genome. Despite high gene editing
efficiency, technical and regulatory obstacles are likely to greatly limit progress toward commercial use. Technical obstacles include
difficult and slow transformation and regeneration, delayed onset of flowering or clonal systems that make sexual segregation of
CRISPR-associated genes difficult, inefficient excision systems to enable removal of functional (protein- or RNA-encoding) transgenic
DNA, and narrow host range or limited gene-payload viral systems for efficient transient editing. Regulatory obstacles include those
such as in the EU where gene-edited plants are regulated like GMO crops, and the many forms of method-based systems that regulate
stringently based on the method vs. product novelty and thus are largely applied to each insertion event. Other major obstacles include
the provisions of the Cartagena Protocol with respect to international trade and the need for compliance with the National
Environmental Policy Act in the USA. The USDA SECURE act has taken a major step toward a more science- and risk-based—
vs. method and insertion event based—system, but much further regulatory and legal innovation is needed in the USA and beyond.
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Introduction

Trees and clonally propagated plants represent a large portion
of cultivated plant species. They are used for food, fiber, and
fuel, and include some of the best-known crops in the world,
including banana, apple, citrus, grape, stone fruits, nut trees,
sugar cane, potato, mint, and numerous species of forest trees
used for wood production. Many of these crops have ancient
associations with agriculture, and some clones have had hun-
dreds to thousands of years of continual propagation and cul-
tivation, as is evidenced by recent genomic characterizations
(Duan et al. 2017; Wu et al. 2018; Vondras et al. 2019). For
clonally propagated plants, perpetual retainment of genotype-
unique traits and heterosis is an important trait common to

many cultivars. Coupled with delayed onset of reproduction,
low tolerance of inbreeding, and natural sterility, many of
these species are slow and difficult to breed. In addition,
oligogenic and recessive traits of high value, such as those
affecting product quality and pest resistance, are nearly im-
possible to breed for when they are rare in gene pools. Thus,
by enabling the efficient production of loss of function traits,
gene editing provides a powerful new tool that was essentially
unavailable in tree and clonal crops.

The same traits that make sexual breeding difficult in tree
and clonal crops, however, make gene editing and genetic
engineering challenging. It is difficult to introgress new edits
or transgenes into diverse lines and also difficult to remove
editing machinery from the genome by sexual segregation, as
is common in annual crops. In addition, many of these species
are also notoriously difficult to genetically modify and regen-
erate (Birch 1997; Busov et al. 2005). Even in species where
genetic transformation has been accomplished, such as pop-
lars and eucalypts, most genotypes remain extremely difficult
to transform (Nagle et al. 2018). Thus, new technologies that
can speed genetic modification and gene editing, or reduce
obstacles to their regulatory acceptance, are crucial.
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There are several classes of technologies that can promote
the production and acceptance of gene-edited trees and clonal
crops. Technologies such as the use of developmental regula-
tors (DRs) for example GROWTH REGULATORY FACTOR
4 (Debernardi et al. 2020), among many others, to aid regen-
eration of genetically modified cells have been reviewed else-
where and will not be covered here (Nagle et al. 2018).
However, there have been very few reports of their successful
use in tree and clonal crops (Florez et al. 2015; Brand et al.
2019; Maher et al. 2020), thus appear to be important tech-
nologies for further development. The use of DRs is likely to
require transient expression or excision from the genome
(Hoerster et al. 2020), in common with the desire to avoid
permanent insertion of gene editing machinery from genomes
(to avoid off-target effects and ease regulatory or market ap-
proval). Thus, most of the technologies we discuss below can
have benefits beyond facilitating the production and accep-
tance of gene-edited varieties. We first briefly review recent
developments in CRISPR technology with special relevance
to tree and clonal crops, then discuss options for transient
editing, transgene excision, and accelerated flowering to en-
able segregation of gene editing components away where
breeding methods allow it.

CRISPR/Cas Techniques: a Rapidly Evolving
Toolset for Plant Genetic Modification

The previous decade has seen the rapid development of reli-
able and versatile molecular tools for the targetedmodification
of endogenous plant genomes, which has been a broad and
rapid departure from mainly transgene-based tools such as
overexpression, silencing, misexpression, and introduction
of novel traits, which together dominated plant molecular bi-
ology throughout the 1990s and 2000s. While a number of
effective site-directed nucleases such as TAL-like effector nu-
cleases (TALENs) and designer zinc finger nucleases (ZFNs)
have been successfully used in plants, in recent years,
CRISPR/Cas9 systems have become most common
(reviewed in Razzaq et al. 2019) Many recent variants of the
original Cas9 system from Streptococcus pyogenes (spCas9)
have expanded the toolbox of the types of modifications that
can be accomplished, highlighting the versatility of Cas pro-
tein systems.

The main functional attributes of CRISPR systems are the
capacity for mutations in target genes, directed single base
changes, and directed sequence modifications (termed
homology-directed replacement: HDR) (reviewed in Chen
et al. 2019). Directed mutations lead to loss of function
through frame-shift mutations or large deletions, which can
be done in multiple genes simultaneously at high efficiency.
There are many examples of such applications in trees and
other clonal crops (summarized in Table 1). By fusion of

catalytically dead Cas9 to natural or synthetic cytosine or ad-
enine deaminases, targeted changes to individual bases can be
accomplished without the use of a donor template (reviewed
in Bharat et al.. 2020). Traits such as herbicide resistance traits
have been modified using this method (Li et al. 2018) and
were recently demonstrated in sugarcane (a clonal crop) (Oz
et al. 2017). HDRwas also recently shown in cassava to tag an
endogenous gene with GFP to monitor expression levels
(Veley et al. 2021); however, to our knowledge, no trait-
focused non-herbicide-resistant traits have been shown in a
tree or clonal crop using HDR. HDR in comparison is far less
efficient than direct mutations or base editing, and as
discussed below raises larger regulatory concerns as they are
generally treated as regular GMOs.

Because rates of HDR are low compared with directed
mutation, several methods have been adapted to improve ef-
ficiencies. These include the use of viral replicons that in-
crease donor template copy number (Čermák et al. 2015). A
second means to improve rates of directed sequence replace-
ment is to increase the temperature during the early stages of
transformation, as the efficiency of many Cas proteins seems
to be tailored toward warmer temperatures than are commonly
found in plant in vitro culture (22–25°C) (Malzahn et al. 2019;
Milner et al. 2020). Still, many reports from stable integration
of Cas9 and gRNAs in several species report 10% or lower
rates of HDR incorporation of a donor template. Cas9 modi-
fied fusions to proteins such as virD2 may further increase
these rates in addition to other potential strategies
(Begemann et al., 2017; Čermák et al., 2017; Ali et al.,
2020; Dong et al., 2020). Another technological improvement
useful for directed sequence replacement is “prime” editing
(Anzalone et al. 2019). It does not require a DNA template nor
homology-driven recombination and thus should be more ef-
ficient than HDR. So far, this has been demonstrated in rice,
wheat, and potato but at fairly low frequencies of 10–20%
(Lin et al. 2020; Veillet et al. 2020b). Though inefficient at
present, these approaches greatly increase the types of geno-
mic modifications available, such as insertion of promoter
elements to change endogenous expression and directing
transgenes into “safe harbors” (i.e., well-characterized zones
of DNA unlikely to be affected by transgene silencing or
affecting the function of native genes).

Means to Produce Edited Trees/Clonal Crops
Without Permanent Cas9/gRNA Integration

The dominant method for the development of CRISPR/Cas9-
mediated edits in the genomes of trees and clonally propagat-
ed crops is through stable Agrobacterium-mediated transfor-
mation (see Table 1 for recent trends). Generally, this would
involve delivery of Cas9, gRNAs, and plant resistance marker
genes in a single T-DNA. While it is routine in many
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herbaceous species to self-pollinate such transgenic plants and
then screen progeny for a combination of desired edits and
absence of the CRISPR-related genes, it is very difficult to do
in trees and clonally propagated crops (Nadakuduti et al.
2018). This is often due to the time delay to onset of flowering
(especially in trees), intolerance of inbreeding, sterility of hy-
brid or polyploid varieties, and loss of clonal integrity due to
sexual segregation. If the Cas9 and gRNA genes must be

removed from edited lines due to regulatory needs or biolog-
ical concerns (discussed below), methods for editing without
integrated transgenes, or technologies for removing integrated
transgenes, will be required. In the following sections, we
outline the general methods that are available and the subject
of active research (class I–IV, Fig. 1). We do not consider the
case for retention of gene editing machinery in commercial
plants, although evidence for extremely low rates of off-target

Table 1 Gene editing in trees and clonal crops 2017–present.

Genus Editing strategy (stable (S), transient
(T), virus (V), (# studies))

Traits for improvement

Gymnosperms

Pinus radiata S(1) Cell wall modification

Dicots

Hevea T(1) Hevea T(1), Cas9-RNPs Flowering time

Populus S(18) Flowering traits, sterility, branching form, sex, determination,
lignin contents, photoperiodism, anthocyanin biosynthesis,
defense biochemistry

Malus S(4),T(2), recombinase excision,
transient Agrobacterium, Cas9-RNPs

Disease resistance, herbicide resistance

Pyrus S(1) Flowering time

Parasponia S(1) Nodulation, hormone signaling

Eucalyptus S(2) Wood quality, sterility

Coffea S(1) - PDS editing only

Theobroma S(1) Disease resistance

Camellia S(1) Caffeine biosynthesis

Citrus S(8), T(1), Cas9-RNPs Disease resistance

Actinidia S(4) Sex determination

Vaccinium S(1) Flowering traits

Humulus S(1) - PDS editing only

Vitis S(6), T(1), Cas9-RNPs, recombinase excision Disease resistance

Manihot S(5) Starch content, disease resistance

Solanum S(11), T(3), transient Agrobacterium, Cas9-RNPs Starch content, disease resistance, herbicide resistance,
self-incompatibility

Ipomoea S(1) Starch content

Fragraria S(9) Hormone signaling, fruit color, flowering, fruit sugar contents

Monocots

Musa S(7), T(1), Cas9-RNPs Dwarfism, disease resistance, beta-carotene content

Saccharum S(2) Herbicide resistance, lignin content

Sources supporting the table row entries are listed in Table S1, and include the following: Pinus (Poovaiah et al. 2020),Hevea (Fan et al. 2020), Populus
(Wan et al. 2017;Wang et al. 2017; Yang et al. 2017; Elorriaga et al. 2018; Fan et al. 2018;Muhr et al. 2018; Ramos-Sánchez et al. 2019; An et al. 2020;
De Meester et al. 2020; Della Maggiora 2020; Ding et al. 2020; Fellenberg et al. 2020; Movahedi et al. 2020; Müller et al. 2020; Qin et al. 2020; Tsai
et al. 2020; Wang et al. 2020; Azeez and Busov 2021),Malus (Osakabe et al. 2018; Charrier et al. 2019; Dalla Costa et al. 2020; Pompili et al. 2020;
Zhou et al. 2020a), Pyrus (Charrier et al. 2019),Citrus (Jia et al. 2017b; Jia et al. 2017a; Peng et al. 2017; Jia et al. 2019; Zhu et al. 2019; Zou et al. 2019;
Dutt et al. 2020; Huang et al. 2020; Jia andWang 2020; Omori et al. 2021), Parasponia (van Zeijl et al. 2018), Coffea (Breitler et al. 2018), Theobroma
(Fister et al. 2018),Camellia (Ma et al. 2021), Actinidia (Wang et al. 2018b; Akagi et al. 2019; Varkonyi-Gasic et al. 2019; Varkonyi-Gasic et al. 2021),
Humulus (Awasthi et al. 2021), Vitis (Nakajima et al. 2017; Osakabe et al. 2018; Wang et al. 2018a; Ren et al. 2019; Dalla Costa et al. 2020; Li et al.
2020a; Sunitha and Rock 2020; Awasthi et al. 2021),Manihot (Odipio et al. 2017; Gomez et al. 2019; Chatukuta and Rey 2020; Li et al. 2020b; Veley
et al. 2021), Solanum (Andersson et al. 2018; Hummel et al. 2018; Kusano et al. 2018; Nakayasu et al. 2018; Enciso-Rodriguez et al. 2019; Johansen
et al. 2019; Osmani et al. 2019; Tuncel et al. 2019; Veillet et al. 2019; Yasumoto et al. 2019; Bánfalvi et al. 2020; González et al. 2020; Sevestre et al.
2020; Veillet et al. 2020b; Veillet et al. 2020a), Ipomoea (Wang et al. 2019), Vaccinium (Omori et al. 2021), Fragraria (Xing et al. 2018; Zhou et al.
2018; Feng et al. 2019;Martín-Pizarro et al. 2019;Wilson et al. 2019; Alvin 2020; Gao et al. 2020; Xing et al. 2020; Zhou et al. 2020b), Eucalyptus (Dai
et al. 2020),Musa (Kaur et al. 2018; Naim et al. 2018; Tripathi et al. 2019; Hu et al. 2020; Kaur et al. 2020; Ntui et al. 2020; Shao et al. 2020; Wu et al.
2020), Saccharum (Oz et al. 2017; Kannan et al. 2018)
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mutation in plants (Young et al. 2019), reviewed in Graham
et al. (2020) and Modrzejewski et al. (2020), and recent evi-
dence for a virtual absence of vegetative consequences of
continued CRISPR/Cas9 expression in eucalypts (Elorriaga
et al. 2021), provides support for this option. If CRISPR ma-
chinery is retained, there may be regulatory or market con-
cerns over potential gene drives affecting domesticated or
wild/feral populations. However, because of the long genera-
tion time or low fertility/sterility of many tree and clonal
crops, we expect that at least the biological concerns over
possible gene drive to be negligible.

Class I. Stable Integration of Gene Editing Components
Followed by Removal of Functional Components Via Gene
Excision The removal of parts of transgenes has been a key
component of transgenic research in plants for several de-
cades, where focus has been on removal of antibiotic or

herbicide resistance markers for regulatory acceptance
(reviewed in Tuteja et al. 2012). Another benefit of marker
removal is so that elite-generated insertion events can be
stacked with further transgenic traits using the same selectable
marker. Generally, marker removal from integrated
transgenes by recombination is not possible even in annuals
with high fecundity because of the tight linkage between the
desired trait and the selectable marker in the same transgene.
This necessitated methods where parts of the transgene could
be selectively excised after the initial transformation process,
and these usually focused on the somatic removal of selectable
marker genes using recombinases such as Cre from P1 bacte-
riophage and FLP from yeast (Kilby et al. 1995; Wang et al.
2005; Hu et al. 2008; Kim et al. 2012), although more exotic
recombinases have been used such as R, ParA, and CinH
(Schaart et al. 2004; Shao et al. 2017). In these strategies,
recognition sites for the recombinases are included at flanking

Figure 1. Methods for gene editing product development in trees and
clonally propagated crops and anticipated regulatory outcomes in the
USA under USDA SECURE. Gene editing via CRISPR/Cas9 can be
accomplished through several approaches in trees and clonally propagat-
ed crops. These involve stable integration of an editing transgene in the
genome (top arrow), viral delivery methods (left arrow), and transient
delivery systems (right arrow). Under SECURE, methods detailed in
the green region are likely to be exempt from regulation so long as the
trait meets eligibility criteria and only single and simple edits are made
that mimic potential natural variants. Methods shown in the yellow
highlighted are likely to require a Regulatory Status Review (RSR) sim-
ilar to that for other transgenic traits. Stable integration methods are the
most common at present; in clonally propagated crops, somatic transgene
removal systems mediated by site-specific recombinases or transposable

elements have been demonstrated, though to date only recombinases have
been used in conjunction with gene editing. If sexual segregation is pos-
sible, accelerated flowering systems can be used to remove stably inte-
grated editing transgenes. Transient delivery methods can be accom-
plished by various DNA delivery systems (Agrobacterium, plasmids by
physical delivery) or DNA-free methods (Cas9/-RNPs). These methods
must be efficient enough to produce edited non-chimeric shoots, or pro-
toplast regeneration from single cells, at a rate adequate to address breed-
ing program demands. Viral-only delivery methods could be used if the
viral genome has enough capacity for a Cas enzyme (rhabdoviruses,
Potato virus X) and the gRNAs. If viral systems are used only to deliver
gRNAs during systemic infection, mixed systems with stable Cas9 lines
would be required.
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regions where parts of transgenes are desired to be deleted (the
selectable marker and usually including the recombinase
gene). These could be expressed from inducible promoters
(e.g., heat shock or cold shock) or developmental promoters
(e.g., meristematic or reproductive; Fig. 2(B)) to decrease the
rates of premature marker removal during the initial phases of
transformation, but allow for the excision to occur once inte-
grated transgenic events are isolated or potentially character-
ized (Fig. 2). Thesemethods have been adapted to the removal
of CRISPR-related genes in two recent studies in apple and
grape where the FLP recombinase was expressed from a heat
shock promoter and flanking recognition sites were placed
near the T-DNA borders (Pompili et al. 2020). After transgen-
ic lines were isolated and identified in vitro for traits predicted

to confer blight resistance, the CRISPR-related genes were
excised using heat shock. The method was effective for re-
moving the editing transgene but required recovery
and further regeneration in vitro of the material due to the
prolonged, high temperature required for adequate excision.
A second study in apple and grape using the same approach
and a novel second method using CRISPR/Cas9-mediated
deletion of the transgene showed rapid but incomplete exci-
sion after 3 h of heat shock with FLP recombinase and signif-
icantly less excision using Cas9 (and additionally, issues with
CRISPR target sites being irreversibly mutated to prevent ex-
cision) (Dalla Costa et al. 2020). When taking into account
marker removal studies, recombinase excision approaches
have been validated in several tree and clonally propagated

Figure 2. Method for coupling stable transgene integration followed by
controlled recombinase-mediated excision to generate edited clonal
plants with minimal remaining inserted DNA. (A) Transgenes delivered
by Agrobacterium containing all the elements required for gene editing
and transgene removal are stably integrated into the genome. When
recombinases are expressed, they bind recognition sequences flanking
the T-DNA region and excise the transgene through circularization and
subsequent degradation. (B) Though many schemes for recombinase con-
trol after gene editing are possible (heat shock, reproductive
development-triggered expression, chemical induction), developmental
control of recombinase expression in shoot meristems would allow for
the production of edited shoots with eliminated transgenes in a single step

when used with common organogenic in vitro transformation systems.
Shoots without fluorescent marker genes could be retained and analyzed
for desired edits. For species and genotypes with low transformation
rates, stable integration and recombinase-mediated excision methods are
likely to be beneficial over transient or DNA-free methods, due to selec-
tion and positive evidence of transgenic insertion. The main challenge is
the identification of developmental promoters and associated insulator
elements that give desired and reliable expression levels in transgenic
target tissues; a combination of developmental and environmentally or
chemically induced expression may be needed for such a system to work
reliably.
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species, including poplars, strawberry, potato, and apple,
highlighting their versatility (Schaart et al. 2004; Kondrák
et al. 2006; Fladung et al. 2010; Fladung and Becker 2010;
Timerbaev et al. 2019). However, improvement of the typi-
cally low excision rates seen may require mitigation of target
site methylation (Liu et al. 2021).

A drawback of this approach is that a small residual “foot-
print” from the original T-DNA insertion will still be present in
the genome. If the original insertion event landed within the
coding sequence of an existing gene, the function of that gene
will likely still be affected after the transgene is excised. If a
particular insertion event has multiple T-DNA integrations, the
complete excision of all transgenes may be difficult to accom-
plish, and their resolution may give rise to complex rearrange-
ments or deletions of large sections of native DNA (when the T-
DNAs and associated recognition sites are located in close
proximity on the same chromosome) (Wang et al. 2011).
Thus, as discussed in depth below, under extant regulatory
regimes, the plants, though lacking any transgenically derived
functional (protein or RNA encoding) transgenes, may face
similar regulatory hurdles to conventional GMOs (Fig. 1)—
though of course chromosomal rearrangements are a common
feature of conventional breeding that employs wide crosses,
somaclonal variation, or radiation or chemical mutagenesis
(Bradford et al. 2005; Fossi et al. 2019; Jo and Kim 2019).

Transposable elements can serve a similar function to
recombinases. In this strategy, the transgene could be deliv-
ered with a functional transposase gene and recognition sites
at the borders of the transgene to direct the transposase to
excise. Over time, the integrated transgene might be excised
completely and not be integrated elsewhere in the genome.
Because the maize Ac transposon is very well characterized
and functional in monocots and many dicot plants, several
studies have used the Ac transposase and demonstrated its
function in tobacco and poplar for the removal of transgenes
(Ebinuma et al. 1997). Recent developments in animal trans-
formation systems have developed excision only transposase
enzymes such as piggyBac, which could be adapted to plant
excision systems, but have only been demonstrated in a single
recent study in rice (Nishizawa-Yokoi and Toki 2021). In
demonstrated examples in plants, this strategy has a low fre-
quency of excision and takes several months or longer to
obtain fully non-chimeric, excised events. These drawbacks
explain the increased focus on recombinase excision systems
both for marker removal and editing transgene removal in
trees and clonal crops.

Class II. Transient DNA Delivery (No Integration) Stable inte-
gration of CRISPR-related genes in the plant genome has been
repeatedly shown to give rise to non-chimeric, edited events at
high frequency (Table 1). However, as discussed above, the
complete removal of gene editing components without sexual
reproduction is problematic in trees and many clonal crops.

One obvious solution is to avoid integrating the transgene in
the first place—relying on transient expression of editing
agents. There are several methods that have been demonstrat-
ed or proposed to accomplish this, and they all share similar
drawbacks when compared to editing by stable transgene in-
tegration. These include the difficulties of obtaining non-
chimeric plants without strong selection using antibiotic or
herbicide resistance genes, and overall low rates of editing in
regenerated plants (Chen et al. 2018). The latter is a serious
obstacle for species with low transformation rates, as normally
tens to many hundreds of treated plants must be screened to
find a small number of homozygous knockout edited plants
(Bánfalvi et al. 2020). However, because the gene-edited
plants generated using these approaches will be exempt in
many countries (discussed below), there has been a flurry of
interest in their development.

The first such technique is to borrow what is commonplace
in animal CRISPR/Cas9 editing systems—i.e., simply to pro-
vide the Cas enzyme and associated guide RNAs as a pre-
packaged ribonucleic protein complex (RNP) without any
DNA (unless a donor template is required for HDR) (Chen
et al. 2016). Using this approach requires a physical delivery
method for the Cas9/sgRNA RNPs, similar to how fertilized
zebrafish or mouse embryos are often injected (Hoshijima
et al. 2019). In plants, the most common method employed
has been to use polyethylene glycol (PEG) physical transfor-
mation with cultured protoplasts (which have the cell wall
largely removed), then to regenerate the protoplasts into intact
plantlets in vitro (Murovec et al. 2018; Wu et al. 2020).
Generally, the use of DNA-free delivery and of single-celled
source material greatly reduces the problem of chimeric
regenerants, provides a high rate of editing, and eliminates
the possibility of transgene integration (Metje-Sprink et al.
2019). The main drawbacks are that protoplast regeneration
systems are very difficult to develop and reproduce in most
plant species, especially trees, and protoplast regeneration
methods are well known to cause a high rate of somaclonal
mutation (Roest and Gilissen 1989; Bairu et al. 2011; Fossi
et al. 2019). For example, when comparing protoplast and
explant-based regeneration in potato, the former was found
to cause a much higher rate of structural somatic mutations
(Fossi et al. 2019). Another drawback is the frequent integra-
tion of small fragments of DNA at CRISPR target sites. In
rice, a significant proportion of Cas9 RNP–derived lines
contained DNA integrated at target cut sites whose origin
was most likely explained by contamination from various
sources of plasmid DNA (Banakar et al. 2019). More re-
search in other species, and with contrasting transforma-
tion approaches, is needed to understand how wide-
spread this problem is. A few examples of Cas9-RNP-
mediated gene editing have been demonstrated in clonal
crops and are discussed in greater detail below and
found in Table 1.
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A second method by which edited but transgene-free
events can be obtained is using standard Agrobacterium trans-
formation techniques but applying little or no antibiotic selec-
tion. This approach was demonstrated in tobacco (Chen et al.
2018); however, very low rates of successful edited and
transgene-free events were obtained (0.4%). Potentially, mod-
ifications to Agrobacterium T-DNA function which increase
infection and transient T-DNA delivery, but hinder the rate of
transgene integration, may improve this approach. For exam-
ple, modifications in proteins essential for T-DNA delivery
such as VirD2, the protein which assists in processing and
piloting the T-DNA via interaction with the T-DNA right
border (RB) sequence, or plant factors involved in DNA repair
may be important for reducing the rate of T-DNA integration
(Mysore et al. 1998; van Kregten et al. 2009; van Kregten
et al. 2016; Nishizawa-Yokoi et al. 2021).

Another option for improvement of transient editing is to
have a short period of antibiotic selection when transient ex-
pression is highest. One study in potato saw no significant
increase in edited, transgene-free plant recovery using this
approach and was unable to recover non-chimeric edited
shoots (Bánfalvi et al. 2020). Another study in apple
succeeded in retaining transgene-free edited shoots using a
visual editing marker, but at a 0.26% rate compared with all
regenerated shoots (Charrier et al. 2019). At present, the rates
of edited, transgene-free events may be too low to be useful in
the many species of trees and clonally propagated crops with
poor transformation rates.

Developmental genes that aid in regeneration of genetically
modified cells could also improve the rate of transient editing.
Regeneration aiding genes such as WUSCHEL (WUS) or
BABY BOOM (BBM), whose proteins can move between
cells, can have a negative or toxic impact on cells stably trans-
formed but a positive effect on the regeneration of surround-
ing cells (Lowe et al. 2016; Hoerster et al. 2020). Such “al-
truistic” approaches typically employ a two-vector strategy
where sacrificial cells retain the developmental gene encoding
T-DNA, while neighboring cells are hopefully modified but
do not see developmental gene integration (Hoerster et al.
2020). This approach is desirable because it may increase
the rate of transformation in difficult to regenerate genotypes.
This type of editing was recently shown for “in planta” trans-
formation in tobacco, grape, tomato, and potato with
Agrobacterium (Maher et al. 2020). In this study, a pair of
developmental genes (IPT/WUS or BBM or SHOOT
MERISTEMLESS (STM)) together with sgRNAs (all
encoded by a single T-DNA) was applied to meristematic
tissues of a stable Cas9-expressing plant under growth cham-
ber or greenhouse conditions. Although only a few seeds and
shoots were analyzed, most appeared to be edited but lacking
stable T-DNA integration. Although the generation of a stable
Cas9 expressing founder lines was an added complication of
this approach, this might not be needed (i.e., Cas9 might be

provided in the binary vector, as is common in gene editing
studies). Additional studies to replicate this work, including in
other plant species and in some of the notoriously difficult
trees and clonal crops, are needed.

Class III. Viral Delivery Approaches There has been a recent
increase in the use of viral delivery systems for plant gene
editing. In its most common guise, plant viruses are used to
systemically delivery gRNAs throughout an infected plant
(Hu et al. 2019; Ghoshal et al. 2020). These could be used
to accomplish gene editing in specific tissues (where viruses
replicate) and thus to obtain non-chimeric edited and virus-
free plants from those tissues. The major drawback of using
viruses for editing, whether they be RNA or DNA viruses, is
their limited genome size and thus modest gene delivery pay-
load, if they are to maintaining the ability to move systemical-
ly throughout the plant. Widely studied RNA viruses such as
Tobacco Mosaic Virus (TMV) lose the ability for systemic
infection if Cas9 (~4kb protein-coding portion) is included
in the viral genome (Ellison et al. 2020). In general, this means
that mixed approaches with previously transformed Cas9-
expressing plants are required to generate non-chimeric edited
plants (Figs. 1 and 3).

More advanced viral editing strategies which increase
gRNA mobility in reproductive tissues may expand the ver-
satility of these systems. In contrast to the previous strategies,
some plant negative-strand RNA viruses (NSVs) such as rhab-
doviruses may have the requisite payload capacity to deliver
both Cas9 and the gRNAs via systemic infection. Recently,
the Sonchus yellow net virus (SYNV) and the Potato virus X
(PVX) were shown to be capable of delivering both Cas9 and
gRNAs throughout tobacco plants (Ariga et al. 2020; Ellison
et al. 2020). These studies also caused successful editing of
the PHYTOENE DESATURASE (PDS) endogene, a GFP vi-
sual marker transgene, and a few other genes of interest. Using
this system, after infection and editing, virus-free materials
can be produced through somatic regeneration. Although the
host range of SYNV and PVX is limited, if similar viruses can
be found for suitably wide taxonomic groups (family or gen-
era) of trees and clonal crops, and adapted for use in routine
gene editing, they could be powerful methods for gene
editing. A great deal of research on the molecular virology
of tree and clonal crops, and broadly compatible and better
delivery vectors suited for them, is clearly needed.

Class IV. Accelerated Flowering to Enable Transgene Removal
Via Sexual Segregation in Trees and Clonal Crops
Accelerated flowering in trees, and associated rapid breed-
ing, has been demonstrated in several species (Zhang et al.
2010; Srinivasan et al. 2012; Ye et al. 2014; Klocko et al.
2016), enabling sexual segregation to remove gene editing
components. Of course, such strategies could not be
employed on events with engineered steri l i ty for
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containment (e.g., some proposed plantation forest trees) or
sterile genotypes (e.g., peppermint). In many cases due to
the absence of transformability of desirable elite cultivars,
editing will likely need to be performed in a transformable
genotype, followed by successive backcrossing to the elite
cultivar to obtain marketable lines. This has been

demonstrated as a viable strategy in plum for the introgres-
sion of plum pox virus resistance traits (Petri et al. 2018),
where there is a single gene being introgressed. As a result
of rapid flowering, the desired introgression can be com-
pleted in less than a decade, as opposed to the multiple
decades such an effort in plum would normally require.

Figure 3. Viral methods for gene editing component delivery to generate
gene-edited lines in trees and clonally propagated plants. (A) gRNAs are
delivered to Cas9 transgenic plants through systemic infection of a RNA
virus such as TMV that supports a small genome payload. Infection of
transgenic plants already expressing Cas9 results in many edited cells in
tissues bearing viral infection. Regeneration of infected leaf tissue into
shoots purges the virus and frequently results in fixation for edits/non-
edits due to small founder cell populations. (B) gRNAs are delivered by
systemic infection but are also tailored with mobile RNA elements which

help improve gRNA movement into reproductive tissues (Using parts of
the FT or AG transcript) to areas which are normally inaccessible to viral
infection. When coupled with a transgenic plant with accelerated
flowering and expressing Cas9, edited seeds can be obtained, and the
transgene containing Cas9 and the FT expression construct can be segre-
gated out of the plant genome. (C) Negative-strand RNA rhabdoviruses
with large genome sizes can be used in a manner similar to the method
outlined in (A), however, do not require a Cas9 transgenic plant to infect,
simplifying the generation of edited plants.
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For more complex breeding programs where there are poly-
genic trait targets and the need for many gene donors, FT
transformation of many genotypes is likely to be needed,
and each sexual generation will need to be followed by
phenotypic and/or genome marker evaluations—slowing
breeding substantially. Gene editing would of course add
to this complexity.

These techniques mostly depend on the florigen
encoding gene FLOWERING LOCUS T (FT), or associat-
ed f lo ra l r egula tory genes (e .g . , BpMADS4 or
CENTRORADIALIS/TERMINAL FLOWER 1), that are
overexpressed or suppressed (Flachowsky et al. 2009;
Zhang et al. 2010; Flachowsky et al. 2011; Petri et al.
2018). To combine this technology with gene editing for
transgene segregation in trees and clonal crops, an FT
overexpression gene could be contained within the
CRISPR/Cas9 T-DNA (Fig. 1). Another approach could
include the grafting of CRISPR/Cas9 transgenic material
with desired edits onto an FT overexpressing rootstock, as
further discussed below. A more advanced form of these
methods could be the generation of a Cas9 and FTox
stable integrated line coupled with the viral delivery of
desired gRNAs carried by systemic infection of an RNA
virus such as TMV (Fig. 3). In this hypothetical case, a
single transgenic line could serve as source material for
the introduction of many different engineered traits. This
would be highly desirable for species or genotypes with
very low transformation rates—as is the case with many
trees, other woody perennials, and clonally propagated
crops.

One major challenge of employing strategies dependent
on the grafting of transgenic materials containing editing
transgenes is the graft transmissibility of FT protein,
which has been shown in several instances when
expressed via the commonly used 35S promoter not to
be graft transmissible (Tränkner et al. 2010; Zhang et al.
2010; Zhang et al. 2010; Wenzel et al. 2013), with nota-
ble exceptions found in blueberry, Jatropha curcas, and
citrus (Ye et al. 2014; Song et al. 2019; Soares et al.
2020). Expression from phloem-companion cell-specific
promoters (e.g., SUCROSE SYMPORTER 2 (SUC2)) rath-
er than completely constitutive ones may increase the
abundance of exportable FT protein to reach nearby
grafted branches, as was recently shown in citrus
(Soares et al. 2020). Presumably, this improvement is be-
cause although 35S overexpression of FT is able to induce
early flowering through direct expression at the shoot
apex, it is insufficient in the phloem-companion cells to
be able to reach the thresholds required for flowering
when transmitted through graft junctions. Further work
is needed to establish the generality of such FT expression
approaches for gene editing in trees and other woody pe-
rennial crops.

Recent Examples of Editing in Use in Trees
and Clonally Propagated Crops,
and Perspectives on Future Traits of Interest

A large number of engineered traits have recently been pub-
lished in the literature or in conference abstracts in trees and
clonally propagated crops. A summary of these recent dem-
onstrations within the last 3 yr is available in Table 1 and
includes members of 21 genera. At present, all reported dem-
onstrations of CRISPR/Cas9 editing with the exception of two
studies employing recombinase-mediated excision in apple
and grape, and six instances of DNA-free Cas9-RNP delivery,
had the editing transgenes stably integrated into the genome
and there was no attempt to excise or segregate them away
(Dalla Costa et al. 2020; Pompili et al. 2020). 19 of the 87
studies listed simply demonstrated the function of CRISPR/
Cas9-mediated editing in a given species through mutation of
a visual marker such as PDS. The types of traits targeted with
the studied gRNAs included sexual reproduction, herbicide
resistance, growth habit (dwarfism/semi-dwarfism), disease
resistance, secondary xylem growth, lignin biosynthesis, onset
of flowering, nodulation, concentration of toxic metabolites,
starch or sugar accumulation, shelf life of fruits,
biofortification, and metal transport. Of the 21 genera where
editing has been validated, unsurprisingly, the most studied
are inPopulus (18), potato (15),Citrus (9), strawberry (9), and
grape (6). Six of the 87 studies summarized in Table 1 used
Cas9-RNPs for transgene-free gene editing, relying on proto-
plast regeneration and delivery via PEG or biolistic bombard-
ment. These studies were in potato, grape, rubber tree, apple,
and banana (Malnoy et al. 2016; Malnoy et al. 2016;
Andersson et al. 2018; Fan et al. 2020; González et al.
2020; Wu et al. 2020). Two studies employed transient deliv-
ery of editing reagents by Agrobacterium without integration
and only one succeeded to obtain edited, transgene-free, non-
chimeric regenerants (Charrier et al. 2019; Bánfalvi et al.
2020). These studies were in potato and apple. No studies
used virally delivered editing reagents in a tree or clonal crop.
All the remaining studies used stable introduction of editing
genes via Agrobacterium. The current method of choice for
generation of transgene-free, edited lines is protoplast delivery
of Cas9-RNPs, a technique which demands a large deal of
technical expertise and is likely to be inaccessible for the vast
majority of valuable tree and clonally propagated crop geno-
types and species.

Regulatory Context for Gene-Edited Trees
and Clonally Propagated Crops

US Regulation In the USA, the 1986 Coordinated Framework
for the Regulation of Biotechnology (“Coordinated
Framework”) focused on regulating the process of
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recombinant DNA (“rDNA”) when used in plant and animal
breeding (OSTP 1986). At first, the USDA-APHIS lightly
regulated gene editing of crops under a “Am I Regulated”
process (APHIS 81 FR 65414 2017). The focus was on
whether the DNA had a plant pest gene and without such
DNA sequences (i.e., most of the crops submitted through this
process), there was no legal hook for the USDA to regulate
gene-edited crops at all (Martínez-Fortún et al. 2017).

In May 2020, the USDA-APHIS announced the Final
Rule for its biotechnology regulations 7 CFR part 340,
called the Sustainable, Ecological, Consistent, Uniform,
Responsible, Efficient (SECURE) rule (APHIS, 2020).
Thus, going forward, the USDA’s Biotechnology
Regulatory Services (“BRS”) will implement this rule in
assessing the environmental safety of biotech crops. The
2020 Rule defines genetic engineering broadly as
“[t]echniques that use recombinant, synthesized, or ampli-
fied nucleic acids to modify or create a genome” (7 CFR
§ 340.3., 2021). Under USDA’s new “Regulatory Status
Review (RSR)” that is part of SECURE, developers can
ask APHIS to evaluate novel plants and decide if those
plants fall within the 2020 Rule’s permit scope (but re-
quires less data than the petition process it replaces, in-
cluding an explicit statement that field trial data are not
generally required). In a historically significant move, the
USDA in this Rule focused on the product, not the pro-
cess, used to make the organism.

The 2020 Rule also exempts certain new and old organ-
isms from regulation. These include certain types of inno-
vative plant breeding methods (of most note, genome
editing when the change could have been obtained by con-
ventional breeding), plant-trait-mechanisms of action that
have already been approved (i.e., MOAs, which are combi-
nations of plant genera, gene functions, and traits) rather the
individual gene insertions, and all “Am I Regulated” plants
that were allowed under the past USDA process. In the fu-
ture, the USDA could also exempt any plants whose modi-
fications could have been achieved via conventional breed-
ing. APHIS may grant an exemption itself or parties can
request an exemption. APHIS will then provide public no-
tice and opportunity for public comment if it agrees with the
proposed exemption.

The rule also exempts minor DNA changes: (1) cellular
repair of a targeted DNA break without an externally pro-
vided repair template, (2) a single deletion of any size, (3)
natural DNA repair mechanisms, (4) targeted single base-
pair substitutions (7 CFR § 340.1(b) (2), 2021), and (5)
insertions from compatible plant relatives. Starting in
August 2020, the USDA started letting developers request
confirmation that their organism is exempt (normally
within 120 d). Such confirmation letters will be posted
on the APHIS website to “help them market their products
domestically and overseas” (APHIS, 2020 at 29,799).

For regulated crops undergoing a RSR, if BRS finds no
significant plant pest risk or other impacts after a review of
the public comments under the National Environmental
Policy Act (NEPA), the deregulation notice allows the devel-
oper to commercialize the biotech crop. The EPA also regu-
lates those crops that resist herbicides (to approve herbicide
uses and warnings) or pests covered under the Federal
Insecticide, Fungicide, and Rodenticide Act (FIFRA). The
FDA is expecting to continue to regulate genetically edited
animals under its cumbersome veterinary drug approval pro-
cess (Van Eenennaam et al. 2019) though in the final days of
the Trump administration, the USDA attempted to transfer
that regulatory role to them (Perdue 2021). After approximate-
ly 20 yr of regulatory requests, the FDA approved the
AquaBounty® AquAdvantage® Salmon, highlighting the
cumbersome nature of FDA regulation of animal biotechnol-
ogy (Van Eenennaam and Muir 2011; FDA USF and DA
2019; Steinberg and Vittorio 2019). Many commentators are
calling for a more reasonable approach than the FDA has
taken with GE animals, particularly when there is no drug-
related aspect (e.g., a gene to prevent allergy that does not
influence the structure and function of the animal or intended
eater).

International Regulation The European Union’s High Court
of Justice in July 2018 ruled that crops and other organisms
produced through genetic editing will be regulated as if they
were a “GMO” under its long-standing “precautionary ap-
proach” to regulatory approval. This means that approval
times will take several years, sometimes longer, for crops to
be approved in the EU after being approved by nations plant-
ing the gene-edited crops (Callaway 2018).

The EU’s “precautionary approach” is the law followed
by the 171 nations that are parties to the Cartagena
Protocol on Biosafety (“CPB”). These parties plan to meet
again for the tenth time (COP-MOP 10) in early 2021 in
Kunming, China. At MOP 9 in November 2018 in Egypt,
the parties put gene editing under a “synthetic biology”
descriptor. Since the USA, Canada, Australia, Argentina,
and other grain exporting nations are not signatories to the
CPB, we can expect parties to follow the lead of the EU,
which is in many instances a key trading partner and
source of foreign aid (e.g., in parts of Africa, where the
EU’s influence on GMO policy is notably strong).

As part of the implementation of this law, nations that
are parties to the Biosafety Protocol enact legislation,
such as the European Traceability Directive, that imposes
zero tolerance for the import of any GMO that lacks reg-
ulatory approval (The Cartagena Protocol on Biosafety to
the Convention on Biological Diversity 2021). More na-
tions are imposing regulatory approval requirements as
the Biosafety Protocol is implemented. Thus, any biotech
crop that could be exported, including gene-edited crops
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or derived foods, may also require approval in many of
these overseas markets. Similar problems exist for the
potential use and export of GMO or gene-edited forestry
crops (Strauss et al. 2009)

Canada regulates all “novel foods” and includes gene
editing in that category. This encompasses those crops created
using non-rDNA methods. For example, herbicide-resistant
crops created using older methods such as chemical radiation,
while newer methods such as gene editing, would be regulat-
ed. It is clear that those older forms of plant and animal “mu-
tagenesis” breeding carry greater risks of “pleiotropic” chang-
es (Wolt et al. 2016) that are often raised by activists opposed
to gene editing (FOE F of the E (FOE) 2018) who see risks in
off-target effects in genes (the adverse nature of which remain
unlinked to health concerns). This is in spite of strong evi-
dence that off-target mutagenesis from gene editing in crop
plants (vs. animals) is negligible compared to other sources of
natural and breeding-induced mutagenesis (Graham et al.
2020) Since many of these crops have similar ecological ef-
fects (e.g., there are mutagenic, rDNA and genetically edited
crops with herbicide resistance, all of which can outcross to
wild relatives or cause problematic herbicide-resistant weeds
to develop after widespread use), Canada’s regime at least has
a consistent approach to similar risks (Ellens et al. 2019).

In 2018, Argentina and 12 other nations, including other
major grain exporting nations like Canada, Australia, Brazil,
Paraguay, and the USA, issued a joint statement supporting
agricultural applications of gene editing in agriculture (“pre-
cision biotechnology”), stating that governments should
“avoid arbitrary and unjustifiable distinctions between end
products (crop traits) derived from precision biotechnology
and similar end products, obtained through other production
methods.” Signatories were Argentina, Australia, Brazil,
Canada, Colombia, the Dominican Republic, Guatemala,
Honduras, Jordan, Paraguay, the USA, Uruguay, Vietnam,
and the Secretariat of the Economic Community of West
African States (WTO 2018). We hope that common sense
and good science will prevail over the arbitrary and capricious
“precautionary approach” to regulating gene editing that may
be applied to these products under the Cartagena Protocol on
Biosafety (Nill et al. 2000).

In the USA, there are two routes for opponents of this
technology to seek to stop the launch of a gene-edited crop,
both of which relate to economic and environmental impacts
related to the National Environmental Policy Act. First, in-
junctions to stop the launch of biotech crops have been
granted against beets, eucalypt trees, and alfalfa for “interre-
lated economic effects” and forced environmental reviews
after the USDA had conducted environmental assessments
(but not a full environmental impact statement). Second,
where there is an export-related economic interest involved,
either an injunction under “anticipatory nuisance” (Grossman
2008) or post-marketing litigation seeking recovery for

economic impacts to export-related interests (Ledbetter
2018). Depending on the trait modified and its connection to
environmental and economic or market impacts, such routes
may indeed be fruitful and delay their integration into the
marketplace. To avoid such tactics, new laws that coordinate
regulations across agencies in directing attention to compara-
tive outcomes vs. use of recombinant methods, similar to what
SECURE is hoping to achieve, might be needed in the USA.
And to avoid trade confusion, similar new treaties are needed
at the international level, whether inside or outside of the CPB.

Conclusions

Gene editing is growing rapidly in its application to trees and
clonally propagated crops. The high efficiency that has been
observed in annual crops clearly also applies to trees and clon-
al crops. The surge in publications and modified traits also
suggests both a high scientific and a high commercial demand
for its capabilities. However, the large majority of the publi-
cations to date have not had the gene editing machinery re-
moved from the modified plants, confirming its difficulty in
these crops. This is likely to be a result of their difficult breed-
ing systems, delayed onset of reproduction, and general recal-
citrance to transformation and regeneration ofmodified plants.
Gene editing methods that do not insert transgenes, or seek to
excise them after integration, though feasible and a subject of
active research, have been rarely used and appear highly inef-
ficient. We therefore believe that major innovations are need-
ed both in methods for transient editing and excision, and in
national and international regulation. Biological innovations
should include the further development of widely effective
viral systems for transient editing and efficient inducible
recombinase systems for excision. Regulatory innovations
should seek to focus on the products and their risk/benefit
comparisons to conventional breedingmethods, similar to that
in the USDA SECURE system, thus not needlessly penalizing
the use of recombinant DNAmethods and the addition of inert
(e.g., non-coding) and/or well-studied and harmless DNA
elements (e.g., recombinase sites, T-DNA borders, common
selectable markers) used when making new gene-edited vari-
eties. Similar recommendations have been made many times
with respect to transgenic crop regulation (e.g., Strauss 2003;
Bradford et al. 2005) Indeed, CRISPR-associated genes, even
if left in trees or clonal crops used for food or feed, appear to
have little potential for food safety or allergy problems
(Nakajima et al. 2016), nor as discussed above as gene drives
should they enter wild or feral populations.

Although the new USDA SECURE regulations provide sev-
eral avenues by which trees or clonally propagated and gene-
edited crops could be exempted from regulatory oversight or
minimally regulated through the RSR process, serious regulatory
and legal obstacles may remain given the uncertainty in how the
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regulations actually become implemented in practice, and due to
the limited harmonization among the USDA, EPA, and FDA in
their gene editing rules (e.g., in pest-resistant vs. other types of
crops by the EPA vs. USDA). In addition, the NEPA process
provides an avenue for opponents to greatly delay or block prod-
ucts, and the CBD is capable of blocking or greatly delaying all
products intended for internationalmarkets. Given the great func-
tional similarity of many gene-edited products with those from
conventional breeding, gene editing is challenging regulatory
systems to rethink their foundations, with increased emphasis
on product over process, which scientists have recommended
for GMO crops since the 1980s (National Academies of
Sciences, Engineering, and Medicine 2016). With a decades-
long record of GMO food and tree safety (Walter et al. 2010)
and a world increasingly unable to produce its food and fiber
sustainably, we hope that leaders take full advantage of this mo-
ment to craft more scientifically based systems, rather than cling
to outdated method-based laws.
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