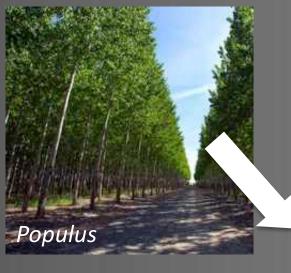

A developmentally timed transgene excision system for somatic removal of gene editing components in asexually propagated plants

Greg S Goralogia Postdoctoral Research Associate Strauss Laboratory, Dept. of Forest Ecosystems and Society



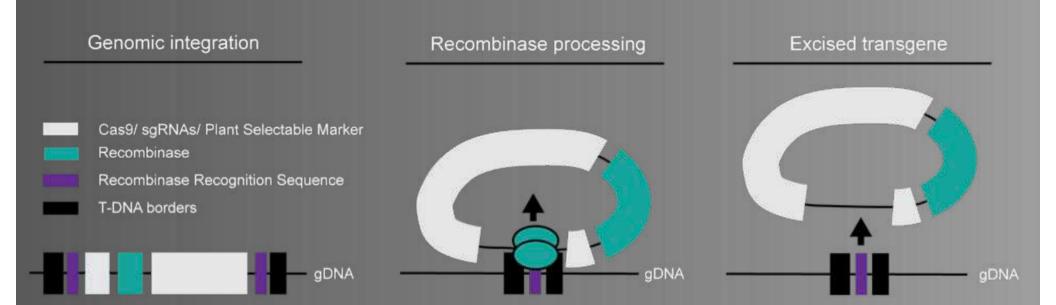
There are now abundant and simple CRISPR/Cas9 systems using stable transgene insertion

Eliminating transgenes with editing machinery is a problem in asexually propagated plants

- * Wide interspecific crosses
- * Intolerant to inbreeding
- * Many years to maturity

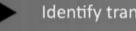
This is especially true for sterility traits for containment in short rotation forestry

- Transgene flow a major regulatorymarket-public concern for GE trees (hybridization with wild relatives or exotic invasiveness)
- Gene editing of floral patterning genes may have much better containment than previous technologies (RNAi, pollen/seed ablation systems) – studies underway in *Populus* and *Eucalyptus* aimed at *LEAFY* and *AGAMOUS*
- Removal of gene editing components in these applications would require a somatic excision system unless transient delivery systems are used


Ongoing field trial of *leafy* and *agamous* mutant hybrid poplar near Corvallis, Oregon

Estefania Elorriaga, PhD

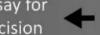
Site-specific recombinases (SSRs) a long known tool for transgene removal - but never developed in to a reliable, efficient method for asexual excision



- Cre, FLP, R, others have been used for transgene excision in plants
- Efficient at excision over long distances
- High fidelity for recognition site

A related method recently published – but difficult to employ

Agrobacterium-mediated transformation of apple


Identify transgenic plants

Genotype for desired edits

Transfer to greenhouse

Heat shock plants (pHSP:FLP and FRT flanking sites included in transgene)

genotype / assay for transgene excision

return to tissue culture

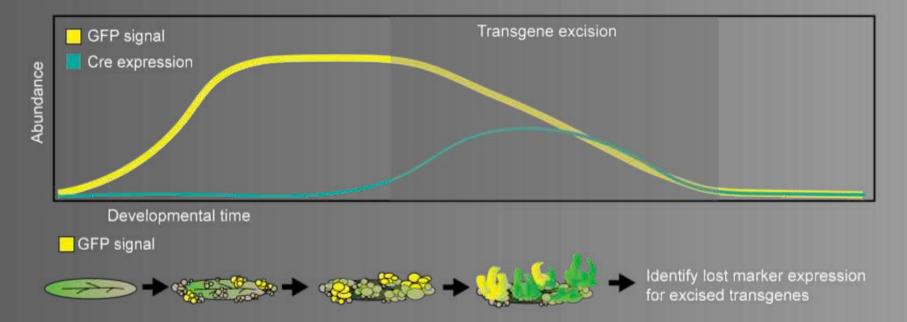
Plant Biotechnology Journal

Research Article 🖻 Open Access 💿 🕥

Reduced fire blight susceptibility in apple cultivars using a highefficiency CRISPR/Cas9-FLP/FRT-based gene editing system

Valerio Pompili 🕱, Lorenza Dalla Costa, Stefano Piazza, Massimo Pindo, Mickael Malnoy 🔀

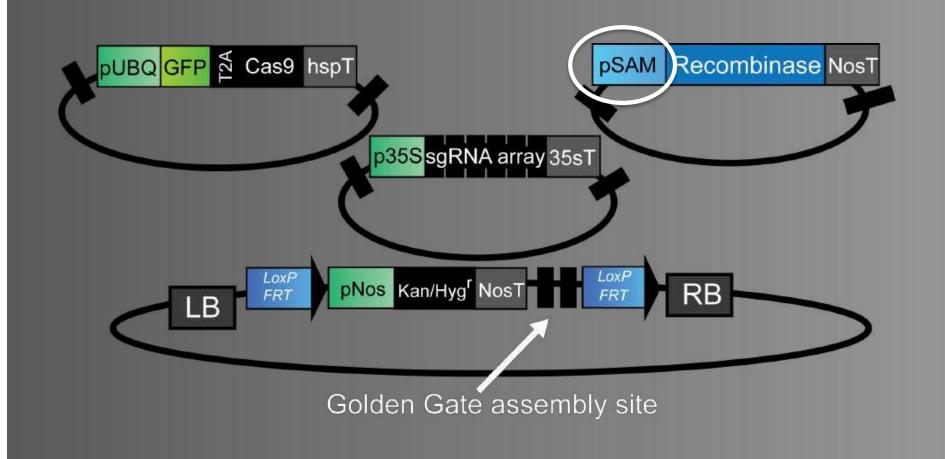
Pompili et. al., 2019 PMID: 31495052


Concept for a developmentally regulated transgene excision system using SSRs

Evaluation of seven promoters to achieve germline directed Cre-*lox* recombination in *Arabidopsis thaliana*

Frédéric Van Ex, Dimitri Verweire, Martine Claeys, Ann Depicker & Geert Angenon 🖂

Plant Cell Reports 28, 1509–1520(2009) | Cite this article


541 Accesses | 15 Citations | 0 Altmetric | Metrics

Excision is temporally and developmentally separate from the gene editing process

We cloned components into a widely used modular plant gene editing vector toolkit for facile assembly

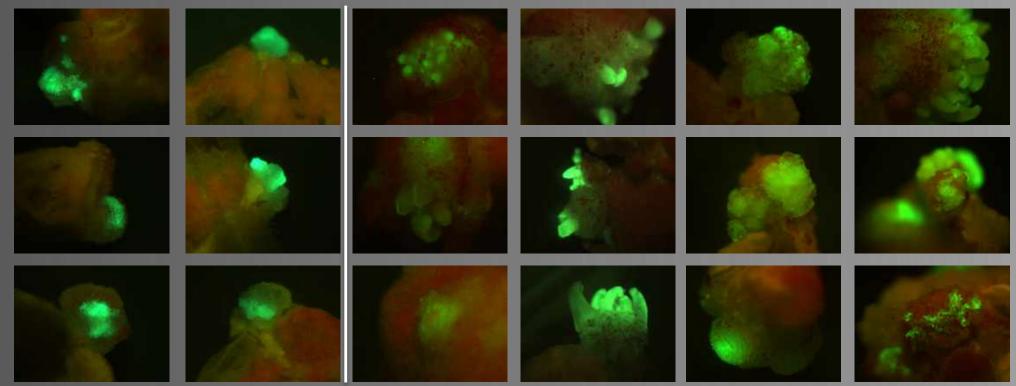
Čermak et. al., 2017 PMID: 28522548

Goralogia: A developmentally timed transgene excision system for gene editing in asexually propagated plants

Oregon State University

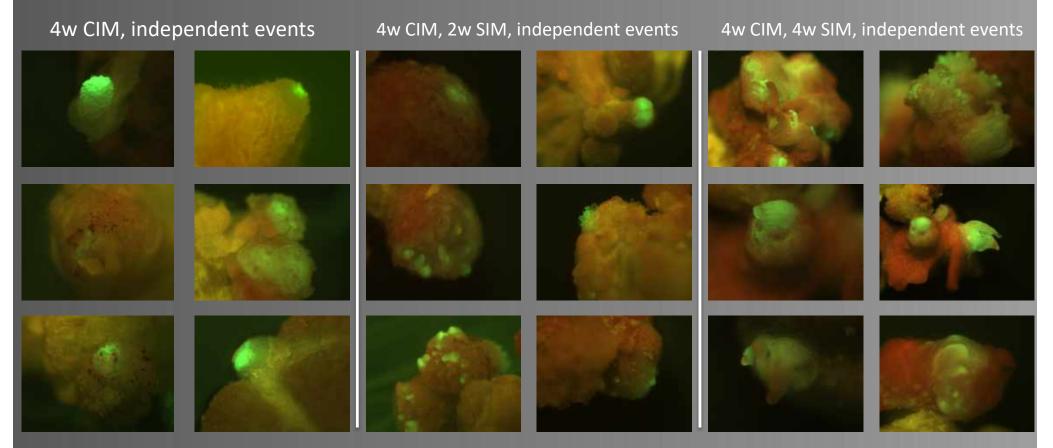
Potential shoot meristem promoters to drive Cre were analyzed for tissue specific expression

Promoter	Length (from TSS)
AtWUS	2.2kb
PtWUS2	2.5kb
AtSTM	3.6kb
PtSTM	2.5kb/1.3kb
AtCSP3	1.3kb
PtCSP3	2.5kb
AtER	1.3kb
PtER	2.5kb
Atyao	1.4kb
AtESR1/DRN	1.6kb
GmHSP17.5	450bp
AtUBQ10	1.3kb
PtUBQ10	1.5kb

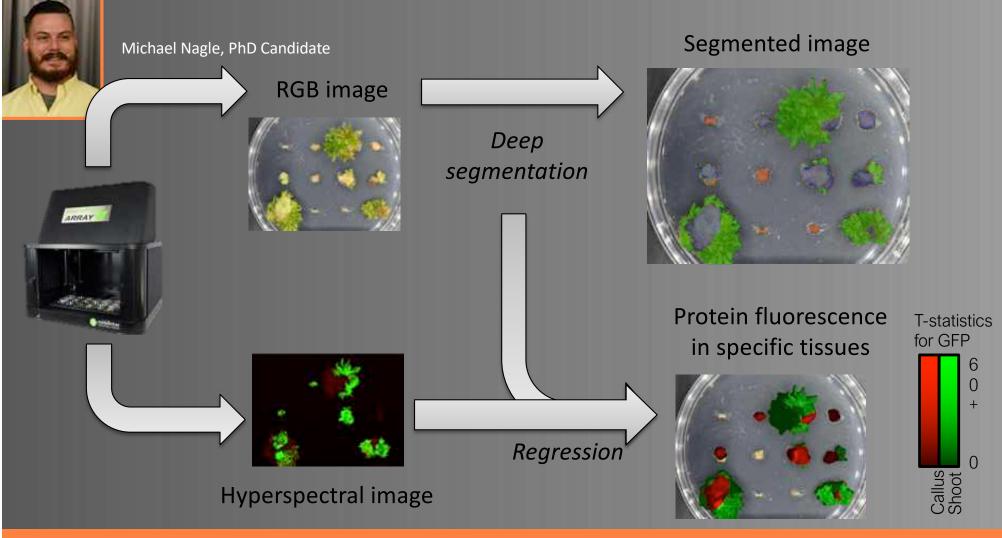

- Selected promoters from the literature known to be expressed in meristems or regeneration
- Avoided any genes with complex 3' dependent transcriptional regulation
- Cloned minimal Arabidopsis promoter fragments and *P. trichocarpa* putative homologs where applicable
- Used promoter:GFP constructs to perform nondestructive imaging during regeneration
- Average of 15 lines per construct produced, propagated for imaging and quantitative analysis of mean and variance in cell specific expression

Arabidopsis COLD SHOCK PROTEIN 3 (CSP3) promoter shows strong expression in regenerating callus and shoot meristems of poplar

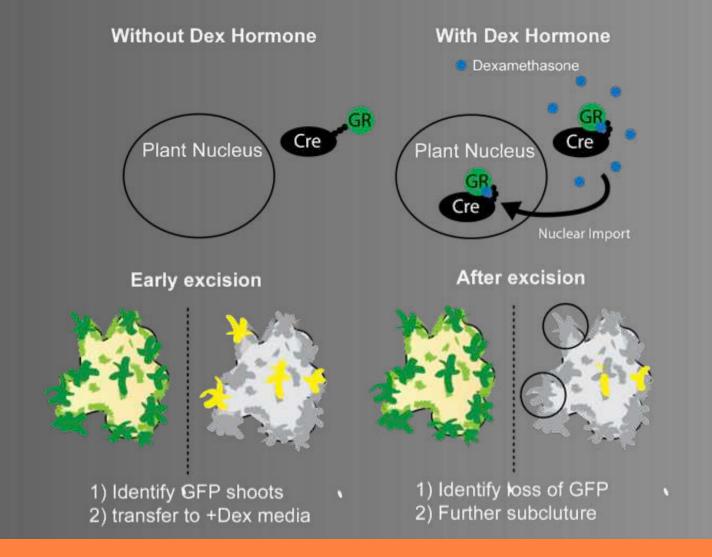
4w CIM, independent events


4w CIM, 4w SIM, independent events

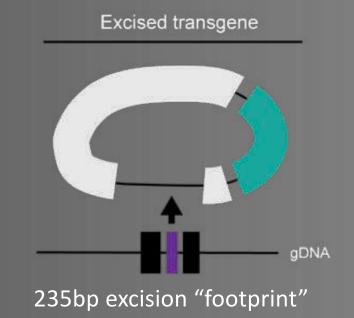
- 1.3kb fragment upstream of the *AtCSP3* TSS is first expressed in late callus development and is highly expressed in shoot primordia
- Note some variation in expression among insertion events


The Arabidopsis *SHOOT MERISTEMLESS (STM)* promoter is weaker, shows higher variation in regenerating callus and shoot meristems

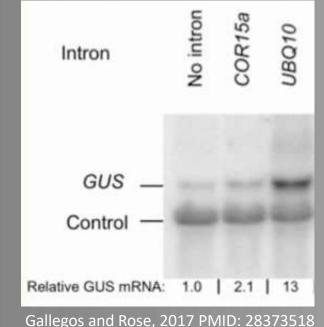
- 3.6kb fragment upstream of the AtSTM TSS is first expressed in late callus development and is highly expressed in shoot primordia
- Note lower and more restricted expression compared to *AtCSP3*; also high variance



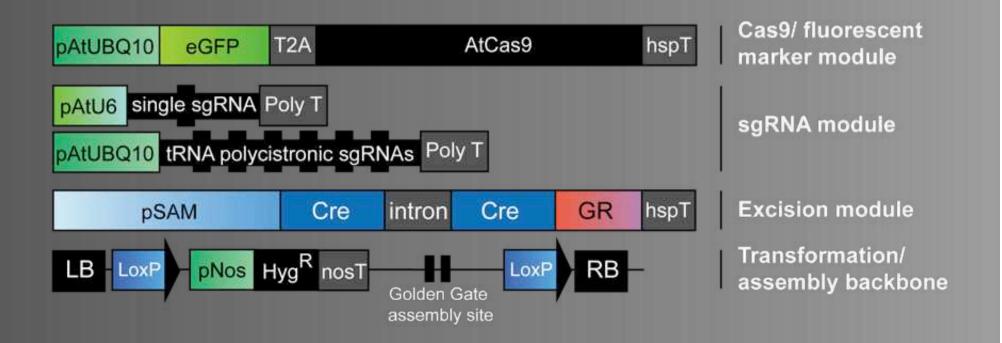
Quantification of event to event expression changes will aid in promoter choice



A fusion of Cre recombinase to a glucocorticoid receptor (GR) was chosen for two levels of control



Intron choice essential to prevent bacterial excision and avoid intron-mediated enhancement (IME)



- Observed complete excision in *E. coli* when Cre construct was included without intron in 100% of colonies......
- We included the Arabidopsis *COR15a* intron to reduce the potential for IME
- We placed the intron at the same codon position as a previously reported Cre gene
- Codon optimized for dicot expression (gene synthesis)

Current vector designs for editing and excision

eGFP/Cas9 bicistronic transcript functional for identification of transgene insertion and editing

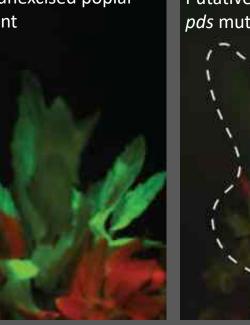
- *pAtUBQ10:GFP-T2A-Cas9* gene has easily visualized fluorescence under stereoscopic low magnification
- We edited the *PHYTOENE DESATURASE (PDS)* gene to visually check the editing rate after
 transformation, and confirmed Cas9
 function when expressed as a
 bicistronic transcript with GFP

Initial testing of gene editing and developmental excision system in hybrid poplars (717-1B4)

- Target for editing:
 - *PHYTOENE DESATURASE (PDS)* chlorosis as editing marker
- One Cre construct was used: *pAtCSP3:dsRed2-T2A-Cre-GR*
- Plants kept on selective media for 4 weeks on CIM, then transferred to SIM for 3 weeks, then transferred to SIM + 50uM DEX or mock treatment without selection
- pds transformation subset closely observed during early stages of DEX induction beginning after 3 weeks of CIM

Fluorescent observation of early DEX treatment shows the potential for transgene excision

Before treatment 8 days after treatment +10uM Dex 2d +25uM Dex 6d Decreased GFP No GFP No change Mock (n=15) 20% 0% 80% +Dex (n=15) 53% 13% 33%


Mock

- DEX treatment was supplied in the • media
- We observed a decrease of GFP • expression in transgenic callus tissue after DEX treatment
- We were unable to observe dsRed expression from the Cre gene (T2A peptide/bicistronic transcript)

Limited loss of fluorescence observed with late shoot regeneration after DEX application in *pds* mutants

Putative unexcised poplar *pds* mutant

- Isolated 51 chlorotic *pds* mutants from DEX treated population
- 26% (n=40/150) of explants contained an edited, chlorotic shoot
- 4 events (8% of chlorotic shoots) showed an apparent elimination of GFP signal in regenerated shoots
- Studied both GFP and non-GFP excision to understand dynamics

Ongoing experiments to determine dynamics of gene editing and excision with DEX treated *pds* mutants

- Currently genotyping both edited and non-edited shoots for the excision footprint and components of the transgene
- Qualitative experiments suggest incomplete excision in nonfluorescent edited plants, and non-edited plants have detectable transgenic tissues
- This could mean Cre activity is too low, or overactive excision before gene editing is complete in many lines – we aim to test these in subsequent experiments
- Quantitative assessments of transgene loss currently underway to understand of editing and excision

Future directions

- Poor excision rate in edited lines suggest changes are still required for a reliable system in asexually propagated crops
- Quantification of promoter:GFP events, insulator testing, and screening new promoters may yield improved Cre expression cassettes
- Hyperspectral/deep segmentation system will aid high throughput analysis of DEX effects and variation thereof
- Once a robust system is in place, we aim to test in other asexually propagated crops (e.g., mint/hops)

Acknowledgements

Steve Strauss Amy Klocko

Strauss Lab Members Qin Xiong Estefania Elorriaga Michael Nagle Michael Gordon Cathleen Ma Bahiya Zahl Ekaterina Premyslova

<u>Corteva Agriscience</u> Bill Gordon-Kamm Todd Jones **Funding Sources:**

USDA Biotechnology Risk Assessment Grant (BRAG) Pr. No: 2017-03820

NSF PGRP Grant Pr. No: 1546900

J. Frank Schmidt Family Foundation

GREATTREES cooperative

Thank you to Professor Daniel Voytas and Colby Starker for providing stock genome toolkit vectors

