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Summary

 

We investigated the efficiency of RNA interference (RNAi) in 

 

Arabidopsis

 

 using transitive 

and homologous inverted repeat (hIR) vectors. hIR constructs carry self-complementary 

intron-spliced fragments of the target gene whereas transitive vectors have the target 

sequence fragment adjacent to an intron-spliced, inverted repeat of heterologous origin. 

Both transitive and hIR constructs facilitated specific and heritable silencing in the three 

genes studied (

 

AP1

 

, 

 

ETTIN

 

 and 

 

TTG1

 

). Both types of vectors produced a phenotypic series 

that phenocopied reduction of function mutants for the respective target gene. The hIR 

yielded up to fourfold higher proportions of events with strongly manifested reduction of 

function phenotypes compared to transitive RNAi. We further investigated the efficiency 

and potential off-target effects of 

 

AP1

 

 silencing by both types of vectors using genome-scale 

microarrays and quantitative RT-PCR. The depletion of 

 

AP1

 

 transcripts coincided with 

reduction of function phenotypic changes among both hIR and transitive lines and also 

showed similar expression patterns among differentially regulated genes. We did not 

detect significant silencing directed against homologous potential off-target genes when 

constructs were designed with minimal sequence similarity. Both hIR and transitive methods 

are useful tools in plant biotechnology and genomics. The choice of vector will depend 

on specific objectives such as cloning throughput, number of events and degree of 

 

suppression required.
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Introduction

 

Post-transcriptional gene silencing (PTGS), also termed RNA

interference (RNAi), is an effective tool for targeted modification

of endogenous gene expression. RNAi has several advantages

over conventional transgenic approaches. RNAi suppression

is highly sequence-specific, yet it is possible to knock down

multiple genes by targeting their conserved sequences.

Reversible silencing can also be achieved by using inducible

promoters (Chen 

 

et al

 

., 2003; Lo 

 

et al

 

., 2005).

While the basic processes underlying gene silencing are

conserved across kingdoms, the specific RNAi mechanisms

differ among species (reviewed by Baulcombe, 2004).

The initiation of gene silencing is triggered by an inducer,

typically a double-stranded RNA (dsRNA) homologous to the

sequence of the target mRNA. Degradation of the target

mRNA is associated with the production of small interfering

RNAs (siRNAs) (reviewed by Baulcombe, 2004; Meister and

Tuschl, 2004; Tomari and Zamore, 2005). PTGS of endogenes

can also be triggered by endogenous 

 

trans

 

-acting siRNAs

(Vazquez 

 

et al

 

., 2004) or microRNAs (Carrington and Ambros,

2003; Tang 

 

et al

 

., 2003).

In plants and nematodes, efficient silencing requires an

amplification step resulting in the production of secondary
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siRNAs by 

 

de novo

 

 RNA synthesis implying activity of RNA-

dependent RNA polymerase (RDR) (Sijen 

 

et al

 

., 2001; Vaistij

 

et al

 

., 2002). In transgenic plants, RNAi targets are involved

in the expansion of the pool of functional siRNAs, which can

further serve as primers for the synthesis of dsRNA by RDR

(Vaistij 

 

et al

 

., 2002). This amplification step results in the

production of siRNAs with identity not only to the dsRNA

inducer sequence, but also to the adjacent regions of target

mRNA. The phenomenon of silencing spreading along the

mRNA sequence is termed transitive RNAi silencing (Sijen

 

et al

 

., 2001).

Transitive RNAi has been reported for nematodes

(

 

Caenorhabditis elegans

 

) (Lipardi 

 

et al

 

., 2001; Sijen 

 

et al

 

.,

2001), fungi (Nicolas 

 

et al

 

., 2003) and plants (Hamilton 

 

et al

 

.,

1998; Voinnet 

 

et al

 

., 1998; Wesley 

 

et al

 

., 2001; Brummell

 

et al

 

., 2003). The direction of transitive silencing spreading

along the target sequence depends on the organism. In the

fungus 

 

Mucor circinelloides

 

, transitive silencing travels in

5

 

′→

 

3

 

′

 

 direction (i.e. downstream relative to the inducer

sequence) (Nicolas 

 

et al

 

., 2003). In plants, transitive RNAi is

bidirectional and can spread both in 5

 

′→

 

3

 

′

 

 (Braunstein 

 

et al

 

.,

2002) and 3

 

′→

 

5

 

′

 

 directions (Vaistij 

 

et al

 

., 2002). The mech-

anism of transitive silencing in plants is poorly understood

and its spreading and efficiency appear to be both sequence-

and position-dependent. The efficiency of endogene

suppression by transitive RNAi is also dependent on the length

of sequence homology (Bleys 

 

et al

 

., 2006). Transitive RNAi can

also trigger off-target effects causing decrease in expression

of the secondary genes without transcript homology to the

inducing locus (Van Houdt 

 

et al

 

., 2003).

Efficient silencing in plants can be achieved by using

vectors with homologous inverted repeats (hIR) directly

targeting a specific portion of the endogene (Waterhouse

 

et al

 

., 1998; Smith 

 

et al

 

., 2000; Wesley 

 

et al

 

., 2001; Helliwell

and Waterhouse, 2005). Construction of such vectors can be

laborious because of multiple cloning steps and potential

instability of the intron-spliced inverted repeats (IR). Alterna-

tively, RNAi could be triggered by a heterologous IR placed

adjacent to the target sequence. Hamilton 

 

et al

 

. (1998)

reported that a presence of a short IR of the 5

 

′

 

-UTR of the

tomato 

 

ACC-oxidase

 

 (

 

ACO1

 

) gene resulted in degradation

of the endogenous 

 

ACO1

 

 and 

 

ACO2

 

 transcripts. Brummell

 

et al

 

. (2003) showed that systemic transitive silencing in

tomato and 

 

Arabidopsis

 

 can be triggered by constructs

containing a target endogene fragment 5

 

′

 

 of an IR of a 3

 

′

 

untranslated region (UTR) of a heterologous sequence.

Transitive RNAi vectors could be used for high throughput

screening of cDNA libraries without any knowledge of

the insert DNA sequence. Transitive vectors also have the

advantage of generating stable constructs carrying target

sequences of multiple unrelated genes.

Despite the widening application of RNA interference

in plant functional genomics and biotechnology, to our

knowledge no direct comparative study of the efficiency of

transitive vs. hIR RNAi has been reported. Furthermore, tran-

sitive RNAi could potentially trigger off-target effects causing

decreased expression of secondary genes without transcript

homology to the inducing locus (Van Houdt 

 

et al

 

., 2003), but

the extent of this problem has not been adequately explored.

To facilitate a direct comparison of the two approaches, we

constructed GATEWAY

 



 

-based (Invitrogen, San Jose, CA,

USA) plant binary vectors with similar backbones in which

dsRNAs with homologous (direct) or heterologous (transitive)

inverted repeats are driven by identical constitutive promoters.

We tested the relative efficiency of hIR and transitive

constructs targeting identical portions of several 

 

Arabidopsis

 

genes. We further evaluated efficiency and potential off-

target effects of 

 

AP1

 

 gene silencing by transitive and hIR

constructs using genome-scale microarrays and quantitative

PCR. We report broadly similar patterns of gene silencing

and no evidence of significant off-target suppression caused

by either RNAi method.

 

Results

 

Construction of vectors and cloning of RNAi target 

genes

 

For direct comparison of the efficiency of homologous IR

and transitive RNAi silencing we constructed two binary

vectors: pCAPD and pCAPT (Figure 1). The pCAPD vector is

an RNAi vector designed for cloning of homologous self-

complementary, intron-spliced inverted repeats of the target

sequence. To facilitate rapid cloning, we introduced into

pCAPD two GATEWAY cassettes (Invitrogen) in inverse

orientation separated by the potato 

 

PIV2

 

 intron as described

in the Experimental procedures. In the pCAPT vector, a single

conversion cassette is located upstream of the inverted

repeat of octopine synthase (

 

OCS

 

) terminator. In both pCAPD

and pCAPT transcription of the short hairpin RNA (shRNA) is

controlled by identical constitutive CaMV

 

 35S

 

 promoters

and 

 

OCS

 

 terminators. A small 5

 

′

 

 fragment of green fluores-

cent protein (

 

GFP

 

) coding sequence was incorporated

upstream of pCAPT recombination site. The 

 

GFP

 

 fragment

allows monitoring transitive endogene silencing in plants

constitutively expressing the 

 

GFP

 

 transgene (however, the

efficiency of this approach has not been evaluated in our

study).
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To evaluate the efficacy of PTGS caused by transitive and

hIR RNAi constructs, we selected three 

 

Arabidopsis

 

 target

genes with known expression patterns and well-characterized

loss or reduction of function mutant phenotypes. This set

included genes: (i) 

 

APETALA1

 

 (

 

AP1

 

) encoding a MADS

domain transcription factor that specifies floral meristem

identity (Mandel 

 

et al

 

., 1992; Bowman 

 

et al

 

., 1993); (ii) 

 

ETTIN

 

(

 

ARF3

 

) encoding an auxin-responsive factor (Sessions and

Zambryski, 1995); and (iii) 

 

TRANSPARENT TESTA GLABRA1

 

(

 

TTG1

 

) encoding a WD40 repeat protein regulating trichome

and root hair development (Walker 

 

et al

 

., 1999). RNAi target

fragments were designed with minimal sequence similarity to

other homologous genes. Identical fragments of each gene

were PCR amplified followed by GATEWAY cloning into hIR

or transitive vectors (pCAPD or pCAPT, respectively) as

described in the Experimental procedures. Resulting constructs

were transformed into 

 

Arabidopsis

 

 and independent trans-

genic events were scored for loss-of-function phenotypes.

 

Efficiency of 

 

AP1

 

 gene silencing using transitive and 

hIR constructs

 

A total of 136 independent pCAPD-AP1 and pCAPT-AP1

primary kanamycin-resistant transformants were scored

for frequencies of events showing

 

 ap1

 

 mutant-like reduction

of function phenotype as described in the Experimental pro-

cedures. Both types of RNAi constructs generated multiple

knockdown lines with a wide spectrum of morphological

changes in floral organ development (Figure 2). Depending

on the degree of floral morphology change all RNAi knock-

down events were classified into three phenotypic series: P0,

P1 and P2. Inflorescences of P0 plants were indistinguishable

from the wild-type controls. Inflorescences of the P2 plants

showed floral homeotic phenotype similar to that of

 

 ap1-1

 

loss-of-function mutant (Bowman 

 

et al

 

., 1993), including

disruption of petal and sepal development. Enlarged sepals in

P2 flowers were transformed into bract-like organs whereas

petals were completely absent or rudimentary. P2 plants

also frequently had a partial conversion of flowers into

inflorescence shoots with secondary flowers developing in

the axils of the first whorl organs of the primary flower. P2

inflorescences did not produce siliques and were completely

sterile when grown at 15 

 

°

 

C. Floral organs of the P1 class

displayed intermediate phenotypic features as compared to

P0 and P2 with variable degrees of sterility among individual

plants.

For both types of constructs the severity of the RNAi-

induced 

 

ap1

 

 mutant-like phenotype was dependent on the

growth temperature and on the flower position in the

inflorescence shoot. Phenotypic changes in both pCAPD-AP1

and pCAPT-AP1 T1 transformants were manifested stronger

when the plants were grown at lower temperature (15 

 

°

 

C).

In contrast, plants grown at elevated temperatures (21–

23 

 

°

 

C) showed weaker phenotypic changes (data not shown).

Therefore, all phenotype scoring was done using plants

grown at 15 

 

°

 

C. In P1 lines, the changes in flower morphology

varied acropetally (i.e. were strongly enhanced at the bottom

of the inflorescence shoot).

A total of 99 out of 136 primary transformants showed

morphological abnormalities in floral organ development

(Figure 2 and Supplementary Table S1). Fifty-four out of 65

pCAPD-AP1 and 45 out of 71 pCAPT-AP1 T

 

1

 

 transgenic lines

(83% hIR and 63% transitive RNAi, respectively) expressed

 

ap1

 

 mutant-like phenotypes.

Figure 1 Schematic representation of vectors constructed for RNAi silencing using homologous (pCAPD) and heterologous (pCAPT) inverted repeat 
constructs. R1 and R2, attR recombination sites flanking a ccdB gene and a chloramphenicol-resistance gene (CmR.) of GATEWAY vector conversion 
cassette, reading frame A (Invitrogen); 35S Pro: CaMV 35S promoter; OCS, octopine synthase terminator; OCS-F and OCS-R, OCS sequence fragments 
in forward (F) and reverse (R) orientations; NPTII, neomycin phosphotransferase II; PIV2, potato intron; LB and RB, left and right T-DNA borders, 
respectively; gfp, a fragment of GFP-coding sequence in pCAPT vector. Homologous IR and transitive RNAi constructs were made using pCAPD and 
pCAPT, respectively. Gene Fragment: location of AP1, ETTIN, orTTG1 fragments. Vectors were constructed using a backbone of pART27 binary vector 
(Gleave, 1992) as described in the Experimental procedures. Arrowheads and arrows indicate orientations of attR recombination sites and OCS 
terminators, respectively. The map is not drawn to scale.
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The majority of both transitive and hIR transgenics had

an intermediate P1 phenotype (Figure 3). However, the

proportion of events showing a strong P2 phenotype was

fourfold lower among transitive than among hIR lines. Con-

versely, the weak P0 phenotype occurred with approximately

twofold lower frequency among pCAPD-AP1 lines, suggesting

that the hIR construct generated a higher proportion of the

events with efficient suppression of AP1 function. Statistical

significance of phenotypic variation among individual events

was evaluated using the χ2-test for independence. We tested

the null hypothesis that the distribution of P0, P1 and P2

phenotypic classes occurred with equal frequencies among

hIR and transitive RNAi lines. This assumption was rejected

(χ2 = 10.3, P ≤ 0.01), suggesting that the shift towards

weaker phenotypes observed among transitive lines was not

due to chance alone.

To establish if the temperature sensitivity of AP1 silencing

phenotype is a feature of both transitive and hIR RNAi

transgenics (as well as to obtain seeds from otherwise sterile

flowers), the 5-week-old plants grown at 15 °C were incu-

bated for 14 days at 23 °C. The pre-exiting inflorescences of

all lines showing strong P2 phenotypes retained sterility at

23 °C as well. However, the newly grown inflorescences

partially recovered the wild-type-like floral phenotype and

Figure 2 Silencing of AP1 using transitive and homologous IR constructs. 
(a) The phenotypes associated with AP1 gene silencing using transitive 
and hIR constructs. P0 phenotype was similar to the wild-type control. 
The flowers of P1 and P2 phenotypic classes developed leaf-like first whorl 
organs and leaf- or staminoid-like second whorl organs. The petals and 
stamens of P2 plants were reduced or absent and secondary flowers are 
frequently produced. The flowers in P2 did not develop siliques in plants 
grown at 15 °C. P1 comprised phenotypes intermediate between P0 and 
P2. Scale bars = 1.6, 2.0 and 2.5 mm (top row) and 2.0, 2.0 and 2.5 mm 
(bottom row), respectively. (b) Relative RT-PCR of AP1 transcripts isolated 
from inflorescences of different phenotypic series. Each lane represents 
rRT-PCR products typically obtained for three independent events of the 
corresponding series. Arrows indicate positions of amplified fragments of 
the target (AP1) and internal control (elongation factor 1α, eF1α) transcripts.

Figure 3 The frequencies of phenotypic series distribution among 
independent hIR and transitive RNAi transgenic lines. AP1 (pCAP-AP1) (a), 
ETTIN (pCAP-ETT) (b), and TTG1 (pCAP-TTG1) (c) knockdown lines of T1 
generation. hIR and transitive lines are shown by patterned and open 
bars, respectively. Numbers above the bars indicate the percentage of 
phenotypic class occurrence.
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some produced siliques. This result suggested that the AP1

silencing phenotype was equally temperature sensitive for

both hIR and transitive RNAi and phenocopied enhancing

effect of lower temperatures for several ap1 mutant alleles

(Bowman et al., 1993).

The phenotypic changes produced by both hIR and trans-

itive RNAi constructs (including temperature dependency and

acropetal distribution of the silencing phenotype) were stably

inherited in T2 and T3 progeny and showed high (more than

90%) phenotype penetrance (Supplementary Table S1

and data not shown). Analysis of RNA synthesis using a

semiquantitative relative RT-PCR method (rRT-PCR) indicated

that AP1 mRNA levels were depleted in P1 and P2 transgenics

(Figure 2b). In contrast, P0 phenotypic series of both transitive

and hIR transgenics had AP1 RNA levels comparable to the

wild-type plants.

Evaluation of the AP1 gene silencing by hIR and 

transitive RNAi constructs using microarrays and 

quantitative RT-PCR

A total of 10 Arabidopsis whole-genome microarrays were

hybridized with the RNA isolated from the inflorescences of

wild-type controls, hIR and transitive RNAi lines as described in

the Experimental procedures. Each construct was represented

by two independent events showing the strong reduction of

function phenotype P2. First, we identified microarray

elements showing differential expression (P < 0.05) in at least

one of the experiments. Then, we identified elements that

were down- or up-regulated in hIR and/or transitive events at

an arbitrarily chosen 1.5-fold difference level.

Hierarchical clustering of all microarray elements revealed

three distinct groups corresponding to the (i) wild-type con-

trols, (ii) hIR, and (iii) transitive RNAi events (Supplementary

Figure S1). Both transitive and hIR RNAi events formed a

joint-tree branch suggesting that both RNAi groups shared

common features in gene expression patterns. Similar

clustering of events according to the RNAi type was also

evident for the group of 118 genes differentially expressed in

both transitive and hIR transgenics (Figure 4). Differentially

expressed genes showing similar expression patterns among

experiments formed three major branches on the hierarchical

tree. At least four major groups of genes were up- or down-

regulated in both hIR and transitive RNAi transgenics as

compared to the wild-type plants.

Several floral developmental genes in the AP1 pathway

showed that some of them were differentially expressed in at

least one or both RNAi types of transgenics (Supplementary

Figure S2). For example, AP1, AP3, SEP2 and SEP3 genes

were down-regulated in both hIR and transitive lines. In con-

trast, CAL and PI were down-regulated (P ≤ 0.05) in hIR but

not in transitive lines. The expression of several housekeeping

genes such as EF1α did not show significant variation among

tested lines, suggesting that the differential expression of the

above floral genes is likely to be associated with AP1 silencing.

To validate microarray results we further investigated

expression of AP1 and three other floral developmental

genes in the AP1 regulatory pathway by quantitative reverse

transcription PCR (qRT-PCR). The levels of AP1 mRNA were

depleted in inflorescences of independent pCAPD-AP1 and

pCAPT-AP1 events showing a strong P2 phenotype (Figure 5a).

In contrast, the absence of a visible phenotype in P0 trans-

formants coincided with the accumulation of AP1 RNA at

levels similar to those of the wild-type controls. The differences

in AP1 RNA levels among P0, P1 and P2 phenotypic series

Figure 4 Hierarchical clustering of genes differentially regulated in 
inflorescences of both inverted repeat (IR) and transitive (TR) RNAi 
transgenics. Average signal intensities were first filtered for statistically 
significant differences (at P < 0.05 level) and then for change in 
expression at an arbitrarily chosen 1.5-fold level. Genes with similar or 
very low expression levels in all samples were filtered out. Classification 
of genes based on their expression pattern is displayed on the relationship 
tree to the left. The tree on top displays sample clustering according to 
common expression features among the genes. High and low levels of 
expression are shown by red and green colours, respectively. Major up- 
and down-regulated clusters of genes are indicated on right by red and 
green vertical lines, respectively. Hierarchical analysis was performed 
using GeneSpring GX 7.2 software (Agilent Technologies).
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were further evaluated using Scheffe’s method of contrasts.

Contrasts estimated using a single degree-of-freedom for P0

vs. P1 and P0 vs. P2 comparisons were significant (P < 0.01)

for both transitive and hIR lines. However, no significant

difference in AP1 transcripts accumulation was evident

among P1 and P2 phenotypic series (P > 0.05). The qRT-PCR

analysis in inflorescences of individual P2 events (Figure 5b)

showed a 40–60% decrease of PISTILLATA (PI) and

SEPALLATA3 (SEP3) transcripts for both types of constructs.

The CAL transcripts were also down-regulated in hIR but not

in transitive pCAPT-AP1 lines, which was consistent with our

microarray data.

Efficiency of silencing of the ETTIN gene by transitive 

and hIR constructs

Both transitive and hIR ETTIN RNAi transgenics showed

expected phenotypic abnormalities such as decreased stamen

number or increased perianth organ number (Figure 6). We

have not been able to classify ETTIN RNAi transgenic lines into

continuous phenotypic series (i.e. weak, intermediate and

strong) because these abnormalities appeared to occur

randomly and separately of each other. Therefore, all observed

morphological changes in floral organs of ETTIN RNAi lines

were assigned to only two phenotypic classes. The P0 plants

had no changes in floral organs development as compared to

the wild-type controls. The remaining events showing any

changes in number of petals or stamens and/or patterning

defects in the gynoecium development were classified as P1.

The P1 phenotype was observed in approximately 53% and

23% of the T1 pCAPD-ETT and pCAPT-ETT transformants,

respectively (Supplementary Table S1 and Figure 3b). Pheno-

typic variation among pCAPD-ETT hIR and transitive events

was evaluated using Fisher’s exact test (P = 0.04), indicating

that the frequency of occurrence of weaker phenotypic

classes among transitive RNAi events was unlikely to be due

to chance alone. Analysis of ETTIN mRNA using rRT-PCR also

confirmed that P1 transgenics of both RNAi types had

depleted levels of ETTIN mRNA (Figure 6c).

Figure 5 Relative levels of AP1, SEP3, CAL and PI transcripts in 
inflorescences of hIR and transitive AP1 RNAi knockdown lines. (a) 
Relative levels of AP1 transcripts in different phenotypic classes of T1 
transgenics. P0, P1 and P2 indicate phenotypic classes. Each data point 
represents an average of measurements among three independent 
events. Measurements were made in triplicate for each individual event. 
Vertical bars denote standard deviation among three independent events. 
(b) Relative levels of SEP3, CAL and PI transcripts in inflorescences of 
individual pCAPD-AP1 and pCAPT-AP1 knock-down lines showing a 
strong P2 phenotype. 1 and 2 designate individual events of P2 class. 
All measurements in (b) for each individual line were made in triplicate. 
The relative amounts of transcripts were calculated using 2–∆∆Ct method 
(Livak and Schmittgen, 2001) with data normalized to the expression of 
EF1α as the internal housekeeping gene and using the wild-type control 
(WT) as an expression reference. hIR and transitive lines are shown by 
patterned and open bars, respectively. Wild-type controls are shown 
by filled bars.

Figure 6 Silencing of Arabidopsis ETTIN gene. Phenotypes associated 
with silencing of ETTIN gene using hIR (a) and transitive (b) RNAi 
constructs. (c) Relative RT-PCR of ETTIN transcripts isolated from 
individual events of different phenotype classes. Each lane shows rRT-PCR 
products typically representing three independent events.
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Transitive and hIR silencing of TTG1 gene

TTG1 RNAi lines were classified into four phenotypic series

based on the number of leaf trichomes: P0, P1, P2 and P3

(Figure 7a). The number of trichomes on the rosette’s second

leaf of P0 plants was similar to that of the wild-type (100–150

per second rosette leaf). The leaves of the P3 lines essentially

had no trichomes. Transgenic lines with intermediate

numbers of trichomes (70–100 and 30–70 per leaf) were

assigned to P1 and P2 phenotypic series, respectively. Results

of a semiquantitative rRT-PCR suggested that a reduction in

the number of trichomes in P2 and P3 plants was associated

with decreased relative levels of TTG1 mRNA in leaves

(Figure 7b). In contrast to hIR pCAPD-TTG1 transgenics, we

did not observe the P3 phenotype (trichomeless leaves)

among transitive pCAPT-TTG1 lines. However, a shift towards

events with a strong phenotype for the TTG1 hIR construct

was not confirmed (Fisher’s exact test probability value

P = 0.14). Low trichome phenotype was stably inherited in

homozygous lines of T3 generation (data not shown).

Discussion

We investigated the relative efficiency of PTGS in Arabidopsis

caused by transitive and hIR RNAi. To facilitate rapid cloning

with the potential of targeting multiple genes, we developed

GATEWAY-based vectors suitable for applications in high-

throughput plant functional genomics. To evaluate the

efficiency of transitive and hIR RNAi we generated a series of

vectors containing sequences identical to portions of AP1,

ETTIN and TTG1 genes. Both types of RNAi constructs induced

specific and genetically heritable reduction of function

phenotypic changes. However, the hIR constructs, compared

with the transitive constructs, generated higher frequencies

of loss-of-function phenotypes in all tested genes, although

the efficacy of knockdown phenotypes varied by gene

(83% with pCAPD-AP1 vs. 53% with pCAPT-ETT). The hIR

construct also manifested generally a greater reduction of

function phenotypes than the transitive RNAi vector.

We studied AP1 suppression by hIR and transitive RNAi

constructs in detail for two reasons. First, the suppression of

AP1 RNA induced morphological changes which could be

classified into a distinct phenotypic series. Second, the AP1

gene shares extensive sequence homology with several other

genes regulating floral development. If either type of AP1

constructs triggered substantial off-target effects in these

genes, they would also cause visible phenotypic changes

similar to those described for double ap1 cal loss-of-function

mutants.

Loss-of-function mutations in floral homeotic gene AP1

result in a loss or reduction of petals due to the failure to

initiate petal primordia leading to the partial conversion of

flowers into inflorescence shoots and to disruption of sepal

and petal development (Irish and Sussex, 1990; Bowman

et al., 1993). The transgenics produced by both transitive

and homologous IR RNAi AP1 constructs phenocopied ap1

reduction or loss-of-function mutants. Both vectors induced

changes in floral development similar to those reported

for antisense or dsRNA AP1 interference (Chuang and

Meyerowitz, 2000). Phenotypes of hIR and transitive lines

were equally enhanced by lower growth temperatures

suggesting that this effect (also observed for ap1 mutants by

Bowman et al., 1993) is not vector-type specific. Silencing by

either hIR or transitive vectors of other target genes used in

our study did not show temperature dependency.

Figure 7 RNAi silencing of Arabidopsis TTG1 gene using homologous IR 
and transitive constructs. (a) Phenotypic series observed for hIR (pCAPD-
TTG1, top panel) and transitive (pCAPT-TTG1, bottom panel) knock-
down lines. P0 corresponds to the weak phenotype undistinguishable 
from the wild-type control (WT), P3 has trichomless leaves. P1 and P2 
comprise phenotypes with intermediate trichome number. Scale 
bar = 3 mm. Note that P3 phenotype was observed only among 
pCAPD-TTG1 transgenics. (b) Arrows indicate positions of TTG1 and 
eF1α RT-PCR fragments. (b) rRT-PCR of ETTIN transcripts in pCAPD-TTG1 
and pCAPT-TTG1 transgenics. Each lane shows typical amplification 
representing three individual events of corresponding phenotypic series. 
Arrows indicate positions of TTG1 and eF1α RT-PCR fragments. 
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The efficient silencing of AP1 by both hIR and transitive

constructs was stably inherited in homozygous lines of T2 and

T3 generations. The stable inheritance and high penetrance

(in excess of 90%) of AP1 silencing phenotype were con-

sistent with those reported for the similar inverted repeat

vectors targeting AP1 (Chuang and Meyerowitz, 2000) or

phytoene desaturase genes (Wang et al., 2005).

Both microarray and relative RT-PCR data consistently

indicated that the levels of endogenous AP1 transcripts

were depleted in RNAi knockdown lines. The results of a

quantitative RT-PCR also indicated that strong (P2) and

intermediate (P1) silencing phenotypes were associated with

the degradation of AP1 RNA. 

To investigate if genes in the AP1 regulatory pathway are

equally affected by the transitive and hIR RNAi, we evaluated

the expression profiles of several other floral genes. AP1 has

been shown to directly and indirectly regulate several floral

homeotic genes (Mandel and Yanofsky, 1995; Ferrandiz

et al., 2000; Ng and Yanofsky, 2001; Lamb et al., 2002). For

example, AP1 is required for activation and localized expres-

sion of the B-class floral genes AP3 and PI (Ng and Yanofsky,

2001; Lamb et al., 2002). Both genes are persistently

expressed in petals (Jack et al., 1992; Goto and Meyerowitz,

1994), which were reduced or absent in the flowers of RNAi

knockdown lines. These two reasons alone offer a possible

explanation why AP1 suppression was associated with the

reduced expression of AP3 and PI.

Microarray expression profiling data obtained for AP1 and

three floral homeotic genes, CAL, SEP3 and PI, were validated

using quantitative RT-PCR. PI and SEP3 were down-regulated

in both hIR and transitive lines. Interestingly, qRT-PCR and

microarray data consistently indicated that the levels of CAL

transcripts were decreased in inflorescences of hIR but not

transitive transgenics. This result suggests that AP1 silencing

by hIR construct may be potentially associated with moderate

off-targeting of the homologous CAL transcripts.

Off-targeting effects present a potentially serious problem

in RNAi silencing technology both in animals (Jackson et al.,

2003) and plants (Xu et al., 2006). To investigate if off-

targeting could be associated with AP1 silencing induced by

transitive or hIR constructs, we studied expression of several

genes with sequence homology to AP1 using microarrays

and qRT-PCR.

AP1 shares 76%, 72%, 65%, 61% and 62% of identity at

the nucleotide level with CAL, FUL, AGL79, SEP3 and SEP2,

respectively. Therefore, these genes could be potential

off-targets by the siRNAs generated by degradation of the

target AP1 dsRNA. Computational analysis (using dsCheck

off-target search software, Naito et al., 2005) predicted that

the CAL would be the most likely off-target candidate. A full

length AP1 coding sequence could produce 53 and 144

predicted siRNAs with zero or one mismatch to the CAL

sequence, respectively. The 200-bp AP1 RNAi fragment we

used for both hIR and transitive constructs was designed

to have minimal sequence similarity to CAL and other

homologous genes. Nevertheless, a fragment-limited search

still predicted 5 and 17 siRNAs with 1 and 2 nucleotide

mismatches, respectively, which could potentially trigger off-

target CAL silencing. Both microarray and qRT-PCR data

suggested that the CAL gene was down-regulated in hIR

but not in transitive lines and that a moderate off-targeting

effect could be triggered by the AP1 hIR construct. However,

a decline in CAL transcript levels in hIR transgenics apparently

was not sufficient to phenocopy the ap1 cal double mutant

(Bowman et al., 1993). Altogether, our data suggested that

the targeting of the least conserved portion of the AP1 gene

by both hIR and transitive constructs was specific. Off-target

RNAi effects were minimal in spite of the prediction of a few

siRNAs potentially capable to trigger transitive silencing of

CAL gene.

Similar to loss-of-function ett mutants (Sessions and

Zambryski, 1995) the suppression of ETTIN by both hIR and

transitive vectors resulted in reduced or increased number of

floral organs such as petals and stamens and in more rare

instances – in abnormal development of the gynoecium.

Consistently with AP1, hIR construct targeting ETTIN generated

significantly more transgenics with visible phenotypic changes

than the transitive construct.

Loss-of-function ttg1 mutants demonstrate impaired

development of root hairs and leaf trichomes (Walker et al.,

1999). In our experiments, both hIR and transitive RNAi

knockdown lines showing reduced trichome number

phenotype also have had depleted levels of TTG1 mRNA. We

did not, however, find a statistically significant shift towards

events with a strong phenotype for the TTG1 hIR construct.

However, near complete trichome development suppression

was observed only among hIR but not among transitive RNAi

transgenics. This suggests that TTG1 silencing was also more

efficient by using inverted repeat vector.

Our hIR and transitive GATEWAY-based vectors offer dif-

ferent sets of advantages for generating and screening RNAi

transgenics. In our hands, the majority of hIR constructs

yielded higher frequencies of transgenic events with strong

RNAi suppression phenotypes compared to transitive con-

structs. However, the transitive vectors could be a method of

choice when (i) high throughput generation of stable con-

structs carrying single or multiple inserts of unrelated genes

is required (e.g. cDNA libraries screening), and (ii) complete
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silencing of the target gene is expected to be lethal for the

plant development. Transitive vectors also allow monitoring

the efficiency of transitive RNAi spreading along single or

multiple gene fragments via silencing of a linked reporter

gene in the transgenic host, although the efficacy of this

approach remains to be studied. Each type of vector has

a distinct set of advantages and their combination provides

effective tools for applications in plant functional genomics

and biotechnology.

Experimental procedures

Plant genotypes, growth conditions, bacterial strains 

and vectors

Arabidopsis loss-of-function mutants ap1 (stocks #CS28, CS6231,
CS6232), ett (stocks #CS8554, CS8555) and ttg1 (stock #CS277)
were obtained from Arabidopsis Biological Resource Center (ABRC).
Ecotype Columbia 0 of Arabidopsis was used for all transformations.
All lines were grown under the same conditions as the transgenics
and used for comparative phenotyping. For phenotype scoring AP1
knockdown transgenics were grown at 15 °C. To obtain seeds from
P2 AP1 RNAi knockdown lines plants were grown at 21 °C.

Agrobacterium tumefaciens strain C58/pMP90 (GV3101), a
disarmed derivative of the nopaline C58 strain, was transformed by
the freeze-thaw method (Holstein et al., 1978). Escherichia coli strain
Top 10 (Invitrogen) was used in all cloning procedures. Arabidopsis
transformation was performed by a floral dip method (Clough and
Bent, 1998) modified as described previously (Filichkin et al., 2004).
To obtain primary T1 transformants T0 seeds (a mixture of transgenic
and non-transgenic seeds from the wild-type plants) were germinated
on MS medium supplied with 25 µg/mL of kanamycin. The statistical
distribution of phenotypic classes among kanamycin-resistant T1

transformants was analysed by χ2-test for independence or Fisher’s
exact test using Statistix 8.0 software (Analytical Software, Tallahassee,
FL, USA).

Homozygous pCAP-AP1 lines showing P2 phenotype were isolated
by consequent rounds of selection. The seeds from individual
independent pCAP-AP1 events of T1 generation showing P2 pheno-
type were plated on kanamycin-containing plates. The ratio of
kanamycin-resistant to kanamycin-sensitive seedlings was calculated
and statistically analysed using χ2 goodness-of-fit test. T2 progeny of
kanamycin-resistant plants showing simple Mendelian inheritance
pattern (3 : 1) was subjected to a second round of selection. T3

lines showing near 100% kanamycin-resistant pattern were further
propagated in soil and scored for the inheritance of RNAi suppression
phenotype.

RNA isolation, analysis, relative and 

quantitative RT-PCR

Total cellular RNA from plant tissues was isolated using Plant RNA
Reagent (Invitrogen). Isolated RNA was treated with RNase-free
DNase (Ambion, Austin, TX, USA) and additionally purified using
Qiagen RNA isolation kit (Qiagen, Valencia, CA, USA) according to
the manufacturer’s protocols. RNA concentration, integrity and 28S/

18S rRNA ratio were estimated using Agilent 2100 Bioanalyser
(Agilent Technologies, Palo Alto, CA, USA). The first strand of cDNA
was synthesized using 1 µg of total RNA, poly(A) oligonucleotide
and Superscript™ III First strand cDNA synthesis kit (Invitrogen)
according to the manufacturer’s protocol.

Relative RT-PCR (rRT-PCR) was performed using two sets of
primers: one pair for the amplification of cDNA from a reference
gene EF1α and another corresponding to cDNA of a target gene. The
primers were designed not to overlap the fragments of sequences
introduced into RNAi constructs. To avoid the amplification of genomic
DNA AP1 and ETTIN primers were designed to encompass the
introns of the respective genes. The sequences of primers and the
sizes of expected RT-PCR products are compiled in Supplementary
Table S2. The distribution of levels of AP1 transcripts among pheno-
typic series was analysed by ANOVA using Scheffe’s F method of
contrasts and Statistix 8.0 software (Analytical Software).

Genomic DNA isolation and PCR amplification

To confirm transgene presence, genomic DNA was isolated from
Arabidopsis leaves using the Plant DNAeasy Kit (Qiagen) according to
the manufacturer’s instructions. Approximately 25–50 ng of DNA was
used as a template for PCR. The transgene presence was confirmed
by PCR using nptII-specific primers (5′-ATCCATCATGGCTGAT-
GCAATGCG-3′ and 5′-CCATGATATTCGGCAAGCAGGCAT-3′) to
amplify 253 bp of T-DNA insertion. To amplify the NPTII gene
fragment, the reactions were subjected to 30 cycles of PCR (94 °C for
1 min, 58 °C for 1 min and 72 °C for 1 min). The PCR products were
separated on 1% agarose gels and stained with ethidium bromide.

Vector construction

Binary vectors for homologous IR and transitive RNAi were constructed
using pART27 backbone (Gleave, 1992). We used the GATEWAY™
Conversion System (reading frame A) (Invitrogen) to incorporate the
proper recombination sites and genes for negative and positive
selection. The conversion cassette contains attR recombination sites
flanking a ccdB gene and a chloramphenicol resistance gene for
negative and positive selection of recombinants in E. coli. The pCAPD
vector contains two cassettes in inverse orientation, flanking the
PIV2 intron from potato (Vancanneyt et al., 1990). Transcription is
terminated by the Agrobacterium OCS terminator. The pCAPT vector
contains a single conversion cassette upstream of an inverted repeat
of the octopine synthase (OCS) terminator. In addition, pCAPT contains
a small fragment of the modified green fluorescent protein gene
(GFP) (Haseloff et al., 1997) upstream of the GATEWAY recombina-
tion site to monitor the efficiency of transitive silencing in transgenic
plants over-expressing GFP protein. In both pCAPD and pCAPT,
the expression of hairpin RNA cassettes is under the control of an
identical portion of a constitutive CaMV 35S promoter. Both vectors
contain spectinomycin and kanamycin (NPTII) resistance genes for
the selection in bacteria and plants, respectively.

Approximately 200 bp target fragments of three Arabidopsis
target genes (gene descriptions and primer sequences are available
online in Supplementary Table S2) were PCR amplified using primers
with tails corresponding to attB recombination sites. GATEWAY
entry clones were created using BP Clonase™ enzyme-mediated
recombination (Invitrogen). Target gene fragments were further
cloned into the PCAPD and pCAPT binary vectors using LR Clonase™
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II enzyme mix (Invitrogen) according to the manufacturer’s protocol.
All final constructs were verified by sequencing.

Microarray analysis

Total RNA was isolated from the inflorescences of Arabidopsis RNAi
transgenics of the T1 generation as well as the wild-type control
plants. The quantity and quality of isolated RNA were evaluated
using NanoDrop spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA) and Bioanalyser (Agilent Technologies). cDNA
and biotinylated cRNA were prepared from 1 µg RNA using the
MessageAmp™ II-Biotin Enhanced Kit (Ambion). Target amplifica-
tion, labelling and fragmentation were carried out according to the
manufacturer’s instructions. The size of resulting biotinylated cRNA
fragments was in a range of 50–200 bp. We used Arabidopsis
genome-wide spotted 70-mer oligo microarrays containing approxi-
mately 29 000 elements (a detailed microarray description is avail-
able at http://ag.arizona.edu/microarray; complete array element
sequence information is available at http://omad.operon.com/
download/index.php). A total of 10 microarrays were used for the
hybridizations. The experiment was duplicated, using two biological
samples (two independent transgenic pCAPT-AP1 and pCAPD-AP1
lines) and each biological replicate was treated in two technical
replicates (individual hybridizations).

Pre-hybridization was carried out in a hybridization chamber
(Corning, Acton, MA, USA) using 0.1 µg/µL herring sperm DNA,
0.5 µg/µL acetylated bovine serum albumin (BSA) and 1× 2-
morpholinoethanesulphonic acid (MES) hybridization buffer at 42 °C
for 15 min. Arrays were prepared for hybridization by briefly
washing the prehybridized slides in water and absolute ethanol
followed by spin-drying. Hybridizations were carried out using 10.0 µg
of fragmented biotinylated cRNA in a solution containing 0.1 µg/µL
herring sperm DNA, 0.5 µg/µL BSA and 1× MES hybridization buffer
at 42 °C for 16 h. Post-hybridization washes included two 1-min
washes with 6× SSPE buffer (Sambrook et al., 1989) and 0.01%
Tween-20 solution at room temperature, two 15-min washes with
1× MES buffer, 0.026 M NaCl and 0.01% Tween-20 at 45 °C
followed by a 1-min wash with 6× SSPE buffer supplied with 0.01%
Tween-20. Staining was carried out at room temperature in solution
containing 100 mM sodium solution (pH 6.5), 1 M sodium chloride,
0.05% Tween-20, 2 µg/µL BSA and 0.01 µg/µL streptavidin-Alexa
Fluor® 555 conjugate (Invitrogen) for 15 min. Following a final wash
with 3× SSPE and 0.005% Tween-20, the slides were spin-dried and
scanned using ScanArray Express 5000 (PerkinElmer, Wellesley, MA,
USA) with laser and photo multiplier tube settings of 90 and 65,
respectively. For compensation of differences in probe labelling and
non-linearity of signal intensities microarray data were normalized
using locally weighted polynomial regression (LOWESS) method and
Imagene 6.1 software (BioDiscovery, El Segundo, CA, USA).
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Supplementary material

The following supplementary material is available for this

article:

Figure S1 Hierarchical analysis of gene expression in inflo-

rescences of hIR and transitive RNAi transgenics. (A) Hierar-

chical clustering of all individual replicates. (B) Close up of (A).

(C) Clustering of samples according to the RNAi type. Red

and green represent elevated and reduced expression relative

to the normalized average signal intensity, respectively. hIR

and transitive RNAi samples form a common branch on hier-

archical tree. WT – wild type, IR1, IR2 and TR1, TR2 designate

individual hIR and transitive RNAi lines, respectively. 1 and

2 indicate individual technical replicates of each biological

sample (transgenic line).

Figure S2 Expression profiles of AP1 and several selected

floral developmental genes in inflorescences of pCAPD-AP1

and pCAPT-AP1 knock-down lines. Microarrays were hybrid-

ized with the total RNA isolated from the inflorescences and

analyzed as described in Experimental Procedures. Each

point represents an average of normalized intensities of two

biological replicates (two independent transgenic lines)

including two hybridization replicates for each line. Vertical

bars denote standard deviation. “v” symbol denotes down-

regulated genes; “^” shows up-regulated genes and “*”

indicates no changes in gene expression at confidence level

P<0.05. Vertical line | demarcates symbols of gene expression

in hIR (left), or in transitive (right) lines. The graph was

generated using GeneSpring GX 7.2 software. At1g07940,

elongation factor EF1α (used as an example of ubiquitously

expressed internal control gene). Gene identifications:

At3g02310, developmental gene SEPALLATA2 (SEP2)

identical to GB:P29384; At3g54340, floral homeotic gene

APETALA3 (AP3). At5g20240, floral homeotic gene PISTIL-

LATA (PI); At1g24260, MADS-box gene SEPALLATA3 (SEP3)

strongly similar to GB:O22456; At1g69120, floral homeotic

gene APETALA1 (AP1) identical to SP|P35631; At5g61850,

floral meristem identity control gene LEAFY (LFY); At5g60910,

floral agamous-like MADS box homeotic gene FRUITFULL

(AGL8); At1g26310, floral homeotic MADS-box gene

CAULIFLOWER (CAL) sharing strong sequence homology

with AP1; At3g30260, MADS-box gene (AGL79).

Table S1 (A) Number of independent primary transformants

in phenotypic series generated by the transitive and hIR

vectors. (B) Inheritance of AP1 silencing phenotype among

hIR and transitive transgenic lines

Table S2 Target genes and primers used for PCR amplification,

construct assembly, confirmation of transgenics, rRT-PCR

and qRT-PCR

Table S3 List of genes differentially expressed in both

pCAPD-AP1 and.pCAPT-AP1 transgenics
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