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Summary

� Genome-wide association studies (GWAS) have great promise for identifying the loci that

contribute to adaptive variation, but the complex genetic architecture of many quantitative

traits presents a substantial challenge.
� We measured 14 morphological and physiological traits and identified single nucleotide

polymorphism (SNP)-phenotype associations in a Populus trichocarpa population distributed

from California, USA to British Columbia, Canada. We used whole-genome resequencing

data of 882 trees with more than 6.78 million SNPs, coupled with multitrait association to

detect polymorphisms with potentially pleiotropic effects. Candidate genes were validated

with functional data.
� Broad-sense heritability (H2) ranged from 0.30 to 0.56 for morphological traits and 0.08 to

0.36 for physiological traits. In total, 4 and 20 gene models were detected using the

single-trait and multitrait association methods, respectively. Several of these associations were

corroborated by additional lines of evidence, including co-expression networks, metabolite

analyses, and direct confirmation of gene function through RNAi.
� Multitrait association identified many more significant associations than single-trait associa-

tion, potentially revealing pleiotropic effects of individual genes. This approach can be particu-

larly useful for challenging physiological traits such as water-use efficiency or complex traits

such as leaf morphology, for which we were able to identify credible candidate genes by com-

bining multitrait association with gene co-expression and co-methylation data.

Introduction

A long-standing question in evolutionary biology is the role of
selection in shaping the spatial and temporal patterns of pheno-
typic variation (Weigel & Nordborg, 2015). In the era of
genomics, it is now possible to identify the molecular mecha-
nisms underlying phenotypic variation on the landscape. Due to
their wide geographical distribution and climatic gradients, forest
trees are an excellent model system for testing how genetic drift,
and selection affect genetic variation within a species (Neale &
Savolainen, 2004; Ingvarsson & Street, 2011; Neale & Kremer,
2011; Ingvarsson et al., 2016). Forest trees generally have large
effective population sizes, extensive gene flow, high genetic varia-
tion, and local adaptation (Neale & Savolainen, 2004; Gonz�alez-

Mart�ınez et al., 2006; Ingvarsson & Street, 2011). Of the total
land area on Earth, c. 31% is occupied by forests, which are of
great ecological and economic importance (MacDicken et al.,
2016). Therefore, understanding the factors affecting variation in
traits that are important for environmental adaptation is of
utmost importance, particularly in the context of rapidly chang-
ing climates (Aitken et al., 2008).

Association genetics has emerged as a major tool for identify-
ing the genomic regions underlying traits of interest (Ingvarsson
& Street, 2011). Using natural populations that have undergone
many generations of recombination between ancestral haplotypes
allows at fine scale the identification of the genomic region affect-
ing a trait. Nevertheless, one of the major downsides of associa-
tion mapping is the requirement for large numbers of loci and
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individuals (Visscher et al., 2017). With recent advances in
sequencing technologies, acquiring genomic data at a whole-
genome scale has become much more feasible. Nevertheless,
despite the high heritability of many morphological traits, only a
small proportion of heritability is explained by SNPs in
most GWAS analyses, suggesting insufficient statistical power
(Solovieff et al., 2013). Power analyses indicated that most associ-
ation studies in forest trees are orders of magnitude too small to
detect the effects of alleles of small effect and low frequency
(Visscher et al., 2017) that collectively account for a large fraction
of the heritability of complex traits (Boyle et al., 2017).

While increasing sample size of GWAS populations is clearly
desirable, it is costly and, in some cases, may not be feasible.
Alternatively, approaches that can improve the power of GWAS
from the same inputs can be used. One approach is to use gene-
and pathway-based analysis, in which GWAS is performed on a
set of SNPs or genes (Kim et al., 2016). Another option is to take
a multitrait approach, in which GWAS is performed with multi-
ple related traits combined in a multivariate framework.
Recently, the latter approach has gained some popularity because
it offers substantial increase in power compared with the standard
univariate approach (Porter & O’Reilly, 2017). One of the big
advantages of multitrait GWAS is that missing information in
one of the phenotypes in the multitrait set can be complemented
by the other phenotypes (Ritchie et al., 2015). The increased
power of multitrait GWAS depends in part on correlation among
traits (Porter & O’Reilly, 2017) and the combination of weak
genetic effects across the traits (Casale et al., 2015). Multitrait
GWAS also takes advantage of pleiotropic effects of polymor-
phisms, thereby increasing statistical power even when the traits
have low correlation (Broadaway et al., 2016; Hackinger &
Zeggini, 2017). Finally, unlike analyses based on principal com-
ponents, multitrait GWAS effectively captures indirect genetic
effects for which a SNP affects one phenotype through its effects
on a functionally related phenotype (Stephens, 2013; Porter &
O’Reilly, 2017).

Here we used the model species P. trichocarpa to explore the
utility of multitrait GWAS to detect genetic variants controlling
adaptive traits. The genus Populus has a wide distribution in the
northern hemisphere and is dioecious, wind pollinated, and
highly heterozygous. Populus are also fast growing, easy to propa-
gate, and demonstrate interspecific hybrid vigour, all of which
makes the genus a model system with high economic potential
for the production of forest products and biofuels (Jansson &
Douglas, 2007; Rubin, 2008). Populus trichocarpa is found in the
section Tacamahaca (Eckenwalder, 1996) and is distributed from
central California to northern British Columbia (BC). It was the
first tree genome to be sequenced (Tuskan et al., 2006) and con-
siderable genetic resources are available, including abundant tran-
scriptomes (Sj€odin et al., 2009; Geraldes et al., 2011; Zhang J.
et al., 2018) and resequencing data (Slavov et al., 2012; Evans
et al., 2014), as well as multiple association populations in repli-
cated plantations (Evans et al., 2014; McKown et al., 2014c; Hol-
liday et al., 2016). From these studies, and others, it has been
shown that climate plays a major role within this species in shap-
ing genetic variation and driving selection. We show here that

multitrait GWAS is a substantially more powerful approach than
single-trait GWAS in identifying molecular determinants of
quantitative traits, although much remaining heritable variation
remains to be identified.

Materials and Methods

Plantation establishment and phenotyping

The P. trichocarpa association population consisted of 1084 trees
collected from natural populations in western Washington, Ore-
gon (OR) and California States, and in BC (Fig. 1). The trees were
clonally propagated from stem cuttings and planted in a common
garden in Corvallis, OR in July 2009 (Evans et al., 2014). The
plantation consists of three blocks in a completely randomised
design and the trees were planted at 29 3m spacing. The planta-
tion was coppiced in December 2010 and again in December
2013. Coppiced plants were allowed to resprout and grow for one
season, after which they were pruned to a single leader in January
of the following year (2012 and 2015, respectively).

In December 2013, 759 trees were sampled for carbon isotope
analysis. Wood cores (12 mm) were taken from breast height of
the tree and the 2012 growth ring was selected for analysis.
Cross-sections of the wood tissue representing the entire growth
ring (c. 1.2–1.8 mg) representing early, intermediate and late
wood were sampled. The wood samples were oven-dried at 65°C
for at least 72 h, weighed and wrapped in a tin capsule before
sending to the Appalachian Ecology Laboratory in Frostburg,
Maryland, USA for analysis. Carbon isotope composition (d13C)
was estimated as follows:

d13C ¼ Rsample

Rstandard
� 1

� �
� 1000;

where, Rsample and Rstandard are the 13C/12C ratios in a sample
and standard, respectively.

In July 2014, leaf characteristics were measured for 1056 trees
(one complete block plus a subset of replicates; Table 1). The first
and second fully expanded leaves (counting from the apex) were
collected from a branch receiving full sunlight. One of the leaves
was used for measuring petiole length and diameter with a digital
caliper and then scanned using a hand-held scanner. Images were
analysed to estimate leaf area, leaf length, leaf width and leaf
perimeter using IMAGEJ software (Schindelin et al., 2015). Dry
weights were determined for the same leaves for estimates of
specific leaf area (SLA). Leaf chlorophyll (SPAD) was assessed
using a SPAD 502 Plus meter (Spectrum Technologies, Aurora,
IL, USA) with an average of three replicate measures on leaf sec-
tion. Abaxial stomatal density was measured by applying clear
nail polish to the broadest part of the leaf close to the midrib. A
clear piece of tape was then used to capture an imprint of the epi-
dermal leaf surface. These samples were mounted on slides and
the number of stomata in 1 mm2 area in four random fields was
counted at 9400 magnification. Pre-dawn leaf water potential
was measured for 964 trees using the cut petiole method
(Scholander et al., 2016). Measurements were made on a fully
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expanded leaf from the middle of the canopy. Leaves were col-
lected between the the hours of 02:00 h and 05:00 h and a pres-
sure bomb was used in the field to measure the pressure of N2 gas
required to force sap from the cut petiole. Height was measured
following the 2015 growing season.

Statistical analyses

All measurements were checked for recording errors and outliers
were removed. Data were checked for normality. The phenotypic
values were adjusted for any within garden microsite variation
using Thin Plate Spline (tps) regression using the Tps function of
the FIELDS package in R. Using tps-adjusted phenotypic values,
broad-sense heritabilities were estimated for all traits using the
genotypes with replicate clonal measurements. Variance compo-
nents were estimated by fitting the model with the lmer and ranef

functions of the LME4 package in R, with genotype as a random
effect, and error estimated from the residuals of the model:

H2 ¼ r2
G

r2
G þ r2

E

Genetic correlation between traits was estimated using Best
Linear Unbiased Predictors (BLUPs) from the same model.
Using the clonal tps-adjusted values, the Pearson correlation was
performed using the cor function of the STATS package in R. The
prcomp function of the GGBIPLOT package in R was used to esti-
mate the relationships of the phenotypes using linear combina-
tions (principal components) of the original phenotypic values.
Leaf water potential was not included in the principal component
analysis (PCA) due to low heritability.

Genotypic data

Preparation of the genotypic data was as described in Evans
et al. (2014) and Weighill et al. (2018). Briefly, whole-genome
resequencing was performed for 1053 trees using Illumina
genetic analysers at the DOE Joint Genome Institute. Pairwise
relatedness was calculated using GCTA (Yang et al., 2011),
taking population structure into account. Trees related more
closely than first cousins were removed from the analyses. The
remaining 882 individuals were used for all subsequent analyses.
A genetic relationship matrix was estimated for the remaining
trees using Genome-wide Efficient Mixed Model Association
(GEMMA), and used as a covariate in GWAS analyses. PCs of
all resequencing data were estimated using smartpca from EIGEN-

SOFT v.6.1.4 and the first 60 PCs were selected as potential
covariates for the association tests. Stepwise regression using the
step function with default selection criteria (that is both back-
ward and forward selection) of the MASS package in R was used
for selecting PCs that were significantly associated with each
phenotype or group of phenotypes. All significant PCs were
used as covariates for GWAS (Supporting Information
Table S1). Finally, SNPs with minor allele frequency ≤ 0.05
and markers with severe departures from Hardy�Weinberg
expectations were removed.

Test for association

Association tests were performed using GEMMA (Zhou and
Stephens 2012; Zhou & Stephens, 2014). Phenotypic BLUPs,
genetic relationship matrix, significant PC axes of the genotypic
data and 6781 211 SNPs (remaining SNPs after filtering with
MAF < 0.05) were used for the association test. Single-trait
GWAS was run for 14 phenotypes (Table 1). The tested model
was:

y ¼ W aþ xbþ u þ ε;

where y is an n-vector of phenotypic BLUP values, where n is the
number of individuals tested; W is an n9 c matrix of covariates;
a is a c-vector of corresponding coefficients, where c is the

Fig. 1 Source locations of 882 Populus trichocarpa genotypes sampled in
this study (coloured dots). The trees were grown in a common garden in
Corvallis, Oregon, USA (black star).
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number of principal coordinate axes used; x is an n-vector of
marker genotypes, b is the effect size of the marker, u is an
n-vector of random effects that includes a relatedness matrix and
ε is an n-vector of errors.

Trait selection for multitrait GWAS

Multitrait combinations were created based on genetic correlations
among phenotypes as well as hypothesised structural and functional
relationships of the traits. The latter can be important even in the
absence of genetic correlations (Stephens, 2013). Pairwise genetic
correlations were performed (Fig. 2; Table S2) and the functional
relationships were assessed through the relevant literature for the
phenotypes before forming 12 multitrait sets (Table 2). For exam-
ple, leaf area, leaf dry weight, leaf length and leaf width were com-
bined to form a multitrait set because these traits are highly
intercorrelated and represent the leaf as a structural unit. Likewise,
tree height, leaf area and petiole length were combined because the
traits are intercorrelated and all affect interception of photosynthet-
ically active radiation. We also combined traits that did not have
high genetic correlations, but presumably had functional relation-
ships. For example, we combined carbon isotope composition, leaf
water potential and stomatal density because these traits together
provide a broader picture of water-use efficiency (WUE), abiotic
stress and gas exchange in plants. Pre-dawn leaf water potential is a
measure of water retaining capacity of the plants. Measurement of
d13C composition in wood provides a measure of integrated WUE.
Higher composition of d13C is related to lower carbon isotope dis-
crimination, which in turn is related to high water use efficiency
(WUE). The gas exchange process in plant leaves is regulated by

stomata in the leaves, and density and number of stomata are key
for this mechanism. Multitrait association was conducted with
GEMMA using the same model as for single-trait associations,
except y is an n9 d matrix of d phenotypes for n individuals.

Analyses of association results

Determining a significance cutoff is one of the biggest challenges
for high-dimension analyses such as GWAS (Sham & Purcell,
2014). Here we have chosen a uniformly conservative approach
to facilitate comparisons among GWAS methods. We used a P-
value cutoff (a ≤ 0.05) based on the Bonferroni correction crite-
rion of 7.379 10�9 and a more liberal P-value cutoff of
19 10�7 to identify suggestive associations. These were later
cross-referenced to other sources of evidence to highlight robust
associations (see Network Analysis below). For the purpose of
summarising the results, significant SNPs within 10 kb of one
another were merged and counted as a single significant locus.
Gene models that were closest to significant SNPs were identified
based on v3 of the P. trichocarpa genome. Annotation informa-
tion was obtained from Phytozome, including expression level in
different plant tissues and annotations of putative gene functions
(Goodstein et al., 2012). Percentage of variance explained (PVE)
by SNPs was estimated using the formula in Shim et al. (2015).

Network analysis

To gain further insight into possible biological functions of can-
didate genes identified by the GWAS analysis, we examined the
position of the genes in networks constructed for the same

Table 1 Broad-sense heritability estimates and the number of single nucleotide polymorphism (SNP)-trait associations for morphological and physiological
traits in Populus trichocarpa.

Trait H2 (TPS)a H2b Nc Total treesd SNPs < 19 10�07e PCsf Chip_H2 (�CI)g

Morphology
Height (HT) 0.363 0.320 876 2378 (851) 0 27 1 (� 0.002)
Leaf area (LA) 0.344 0.336 794 1056 (262) 0 23 0.793 (� 0.265)
Leaf aspect ratio (AR) 0.462 0.477 794 1056 (262) 0 20 0.61 (� 0.312)
Leaf dry weight (LD) 0.371 0.360 844 1094 (250) 0 26 0.751 (� 0.251)
Leaf length (LL) 0.370 0.360 794 1056 (262) 0 22 0.766 (� 0.262)
Leaf perimeter (LP) 0.362 0.351 794 1056 (262) 0 22 0.79 (� 0.262)
Leaf width (LW) 0.344 0.346 794 1056 (262) 0 25 0.76 (� 0.266)
Petiole diameter (PD) 0.297 0.184 839 1124 (285) 0 20 0.62 (� 0.263)
Petiole length (PL) 0.561 0.562 839 1124 (285) 0 23 0.881 (� 0.28)
Specific leaf area (SL) 0.371 0.376 784 1010 (226) 2 19 0.746 (� 0.257)
Stomatal density (SD) 0.500 0.493 813 1064 (251) 1 16 0.834 (� 0.267)

Physiology
Carbon isotope (CI) 0.363 0.375 681 759 (78) 0 15 0.292 (� 0.337)
Leaf water potential (WP) 0.080 0.000 823 964 (141) 0 15 0.322 (� 0.319)
SPAD2014 (SP) 0.310 0.297 839 1124 (285) 1 17 0.566 (� 0.331)

All broad-sense heritability estimates were significantly different from 0 except for WP.
aBroad-Sense Heritability with Thin Plate Spline correction (TPS) correction applied to the phenotypic data.
bBroad-Sense Heritability without TPS correction.
cNumber of genotypes.
dNumber of ramets sampled, with replicates in parentheses.
eSNPs with P-values < 19 10�7 (suggestive significant SNPs).
fNumber of SNP PC covariates used in multitrait GWAS.
gMean Chip Heritability values for phenotypes with confidence interval (CI).
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population that was used in this paper. The networks were based
on the following: gene co-expression using the JGI Plant Gene
Atlas for P. trichocarpa (https://phytozome.jgi.doe.gov); GWAS
of metabolite profiles determined by GC-MS (Tschaplinski et al.
2012), and methylation data for multiple tissues in P. trichocarpa
(Vining et al., 2012). Details of the underlying data and network
construction can be found in Weighill et al. (2018). Briefly, can-
didate genes identified from single- and multitrait GWAS were
used as a seed to identify subnetworks that were potentially
related to the gene. A merged network was created by combining
metabolites at False Discovery Rate (FDR) of 0.1, significant
GWAS SNPs linked to the corresponding phenotypes and the
co-expression and co-methylation subnetworks. The networks
were visualised in CYTOSCAPE v.3.6.1 (Shannon et al., 2003).

Functional analysis of the GAUT9 candidate gene

Detailed functional characterisation was conducted for one of the
genes highlighted by the multitrait GWAS and network analyses
presented here in order to provide experimental validation of the
functional roles inferred by our analyses. A 123-bp fragment
comprising portions of the coding region and 30-untranslated
region of Potri.004G111000 (PtGAUT9.1) was amplified via
PCR from a P. trichocarpa cDNA library using the following
gene specific primers: PtGAUT9.1-F (CACCCCCGGGTTTG
GCCTTTAGACGAATTCC) and PtGAUT9.1-R (TCTAGAG
TGACAACTAATGATCGGATCCA). The fragment was
cloned into an RNAi cassette and transferred to a binary vector

for Agrobacterium-mediated transformation of the P. deltoides
clone WV94, as previously described (Biswal et al., 2015,
2018a). Measurement of leaf traits was carried out on 10 plants
each of 3-month-old WT, empty vector control, and
PdGAUT9.1-KD lines. RNA isolation and quantitative RT-PCR
were performed as previously described (Biswal et al., 2015,
2018a). Briefly, total RNA was isolated using an RNeasy Plant
Mini Kit (Qiagen, Valencia, CA, USA). The primers
PdGAUT9.1-qRT-F (GTGCTTGGCCTCGGATATAA) and
PdGAUT9.1-qRT-R (GAAACATGAAACCTTGGCTTGA)
were used to amplify the target gene, PdGAUT9.1. The closely
related PdGAUT9.2 gene was also evaluated to demonstrate the
specificity of downregulation using the primers qRT-F
(GCGGCATCAATGGTGGATTA) and PdGAUT9.2-qRT-R
(TTCTATTCCTCGCCACTCTCTC).

We also evaluated the impacts of the associated polymorphism
on gene expression in the association population using RNA-seq
data from developing xylem, as described by Zhang J. et al.
(2018). Briefly, normalised gene expression was determined using
TopHat2, Cufflinks, and Featurecounts, and normalised via
DESeq2, followed by Pearson’s correlation with the genotype.

Results

Physiological and morphological trait variation

Broad-sense heritabilities ranged from 0.297 to 0.561 for mor-
phological traits, and from 0.080 to 0.363 for physiological traits

Fig. 2 Pairwise Pearson genetic correlation of selected morphological and physiological traits (traits with at least 681 genotypes) measured in the Populus
trichocarpa common garden in Corvallis, Oregon, USA. The colour spectrum, bright red to bright blue represents highly positive to highly negative
correlations and the number represents the correlation values. Best Linear Unbiased Predictor (BLUP) adjusted values were used. P-values are provided in
Supporting Information Table S1. SPAD represents leaf greenness. AR, aspect ratio; SLA, specific leaf area.
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(Table 1). Pre-dawn leaf water potential had low broad-sense her-
itability that was not significantly different from 0 (Table 1).
Although TPS regression was used to correct for microsite varia-
tion, physiological traits such as pre-dawn leaf water potential
appear to be very sensitive to environmental conditions and the
microclimatic conditions at the time of sampling.

Most morphological traits were highly intercorrelated, whereas
physiological traits were generally not intercorrelated, which is
consistent with expectations due to the high measurement error
for the latter (Fig. 2; Table S2). We performed PCA to further
explore the relationships among traits within the population. The
first principal component (PC1) explained >47% of the total
variation. PC1 and PC2 together explained 61% of the total vari-
ation. Morphological traits were positively weighted towards the
PC1 axis (Fig. 3), which also shows a slight negative correlation
with the latitude of the provenance (r =�0.17, P ≤ 0.001). Speci-
fic leaf area and stomatal density were negatively weighted for
PC2, while SPAD was positively weighted along this axis (Fig. 3;
Table S3). PC2 generally separated the Columbia population
from BC and the core subpopulations (Fig. 3). Most morpholog-
ical traits were correlated with the latitude of origin (Table S4).

SNP-trait associations

We conducted single-trait GWAS with 6.78 million SNPs for
the 14 morphological and physiological traits. We did not iden-
tify any SNP that passed Bonferroni correction
(P < 7.379 10�9). However, we identified a total of four SNPs
(Table 1; Fig. 4a) that passed a suggestive association P-value cut-
off of 19 10�7. These associated SNP were within or close to
four P. trichocarpa gene models (Table 3). PVE of significant
SNPs ranged from 3.45% to 4.35% (Table S5), although this is
likely to be inflated as it is estimated in the discovery population.

Multitrait GWAS for 12 sets of traits identified five SNPs that
passed the Bonferroni correction P-value cutoff and 32 SNPs that
passed the suggestive association P-value cutoff of 19 10�7

(Fig. 4b; Table 4). These SNPs were within or close to 22
P. trichocarpa gene models (Table 4). PVE of these SNPs ranged

from 0.0003% to 4.35% for the individual traits comprising the
multitrait set (Table S5).

To facilitate the presentation, we divided the multitrait associ-
ation results into the following three categories based on the cor-
respondence of the multitrait and the single-trait results. First,
multitrait GWAS with increased power for the same (or nearby)
SNP positions as in the single-trait GWAS (Figs 5a,b, S1).
Second, multitrait GWAS with increased power, but with differ-
ent genomic positions than the single-trait GWAS (Figs 5c,d,
S2). Third, multitrait GWAS with reduced power for some loci,
but with the same (or nearby) SNP positions as the single-trait
GWAS (Figs 5e,f, S3). Each category contained four multitrait
combinations. QQ plots showed a clear improvement for multi-
trait association compared with the corresponding single-trait
association (Figs S4–S6).

Fig. 3 Principal component analysis (PCA) biplot showing the first and
second principal components with individual Populus trichocarpa
genotypes (the points) coloured by provenance as in Fig. 1, and relative
weightings of the explanatory variables indicated by vectors. SPAD
represents leaf greenness. AR, aspect ratio; SLA, specific leaf area.

Table 2 List of traits used for multitrait associations in Populus trichocarpa.

Trait combination Abbreviation popNa PCsb

Carbon isotope, height, leaf area, petiole length CI_HT_LA_PL 632 14
Carbon isotope, leaf area, stomatal density CI_LA_SD 603 12
Carbon isotope, leaf area, SPAD, stomatal density CI_LA_SD_SP 600 12
Carbon isotope, leaf water potential CI_WP 673 6
Carbon isotope, leaf water potential, stomatal density CI_SD_WP 638 8
Height, leaf area, petiole length HT_LA_PL 791 8
Height, petiole diameter, petiole length HT_PD_PL 839 13
Leaf area, leaf dry weight, leaf length, leaf width LA_LD_LL_LW 788 14
Leaf area, SPAD, stomatal density LA_SD_SP 755 14
Leaf aspect ratio, specific leaf area AR_SL 780 9
Leaf dry weight, petiole diameter, SPAD LD_PD_SP 831 7
Petiole diameter, petiole length, specific leaf area PD_PL_SL 781 17

aNumber of unique genotypes.
bNumber of single nucleotide polymorphism (SNP) PC covariates used in multitrait GWAS.
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To provide further evidence for the involvement of the associ-
ated SNPs in trait variation, we integrated our GWAS results
with other independent datasets, including leaf metabolite levels,
gene expression and tissue-specific methylation. Three genes that
were significantly associated with carbon isotope, leaf area and
stomatal density (CI-LA-SD) showed interesting linkages to co-
expressed genes and/or metabolites, including a potential regula-
tory network mediated by YABBY transcription factors, and a
possible regulatory network that is associated with phenolic com-
position (Fig. 6; Tables S6, S7). Similarly, the multitrait associa-
tions for leaf shape (leaf area�leaf diameter�leaf length�leaf
width, and specific leaf area�leaf aspect ratio) were linked by
association with common candidate genes and revealed two large
co-expression networks as well as a group of co-expressed
enzymes that affected cell wall characteristics (Fig. 7).

Direct evidence of the role of GAUT9 in determining leaf
area in Populus

One of the genes associated with leaf morphology (LA-LD-LL-
LW) was Potri.004G111000, annotated as galacturonosyltransferase
9 (GAUT9). The polymorphism was 1.9 kb downstream of the
end of the predicted stop codon (Table S6). The next closest gene
was nearly 33 kb away from the SNP, so Potri.004G111000 is
the most likely gene to be affected by this polymorphism. Consis-
tent with this result, the associated polymorphism correlated
significantly with Potri.004G111000 expression in developing
xylem samples from the association population (Fig. S7a;
r = 0.169, P < 0.001), but not in fully expanded leaves (Fig. S7b;

r = 0.035, ns). Lack of correlation in leaves could be due to sam-
pling of the wrong developmental stage, but this caveat requires
further investigation.

In the process of studying the role of Potri.004G111000 in the
recalcitrance of P. deltoides xylem, multiple P. deltoides RNAi
lines were generated and leaf characteristics of wild type, vector
control and three RNAi PdGAUT9.1-KD lines were compared
(Fig. 8). Reducing the GAUT9.1 transcript level by 51–60%
(Fig. 8c) resulted in a 43–66% increased leaf length and leaf
width at all developmental time points analysed in 3-month-old
glasshouse-grown plants (Figs 8d–f).

Discussion

Identification of the genetic underpinnings of adaptive trait varia-
tion has been an elusive goal of forest tree research for more than
a century (Wheeler et al., 2015). Such efforts have been greatly
enhanced in the age of genomics, which potentially enables iden-
tification of sequence variants controlling heritable variation. The
genus Populus has been a focus of much of this effort due to the
tremendous investment in genetic and genomic resources in
recent years (Jansson & Douglas, 2007). Previous studies have
demonstrated that P. trichocarpa contains substantial heritable
variation that has been shaped by the combined effects of demo-
graphic history and selection (Slavov et al., 2012; Evans et al.,
2014; Geraldes et al., 2014; Holliday et al., 2016). However,
studies focused on GWAS of individual complex traits have
mostly failed to uncover variants that control the majority of
genetic variation in P. trichocarpa (Evans et al., 2014; Geraldes

SNP peak count SNP peak count

(a) (b)

Fig. 4 Populus trichocarpa single nucleotide polymorphism (SNP)-trait association peak counts at 10-kb intervals. (a) Single-trait GWAS, (b) multitrait
GWAS.

Table 3 Genes identified from Populus trichocarpa single-trait GWAS.

Gene modela Trait P-valueb Functional annotationa

Potri.001G371800 Specific leaf area 3.95E-08 NA
Potri.004G111000 Specific leaf area 9.76E-08 Galacturonosyltransferase 9
Potri.008G111800 Stomatal density 8.93E-08 18S pre-ribosomal assembly protein gar2-related
Potri.010G098400 SPAD 4.84E-08 Tetratricopeptide repeat (TPR)-like superfamily protein

NA, not available.
aGene models are annotated using v3.1 of the P. trichocarpa genome.
bSingle nucleotide polymorphism (SNP) P-values < 19 10�7.
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et al., 2014; McKown et al., 2014b, 2018), most likely to be due
to a lack of power to detect variants of small effect and/or low
allele frequency (Visscher et al., 2017). Here, we attempted to
compensate for these problems by using a larger GWAS popula-
tion and by performing multitrait GWAS coupled with multiple
lines of evidence to support the roles of marginally associated loci
in the target phenotypes.

Morphological and physiological trait correlations and
influence of geography

Largely consistent with previous studies (Evans et al., 2014;
McKown et al., 2014a; Holliday et al., 2016), correlations of
morphological and physiological traits with latitude in our study
suggest that the variation in adaptive traits in P. trichocarpa is
partly driven by geography. There was a negative correlation of
tree height with latitude, indicating that northern provenances
grew poorly in our test site. Many leaf traits were also correlated
with height as well as latitude, so the functional relationships
among these traits cannot be readily discerned. Based on the cor-
relation coefficients, leaves became smaller and thicker with low
abaxial stomatal density and high chlorophyll content for trees
from higher latitudes. Several other Populus studies in common
gardens have reported higher nitrogen content, stomatal conduc-
tance and photosynthetic assimilation in northern trees (Gornall
& Guy, 2007; McKown et al., 2014a; Soolanayakanahally et al.,
2015; Elmore et al., 2017; Momayyezi & Guy, 2017). Further-
more, Gornall & Guy (2007) and McKown et al. (2014d) found

a negative correlation between abaxial stomata density and lati-
tude, but they further indicated that the northern P. trichocarpa
trees were amphistomatous, with adaxial stomata density increas-
ing with the latitude. Most trees used in our study lacked adaxial
stomata that are likely to reflect the more southerly distribution
of our collection (data not shown).

For the most part, we found no clear relationships between
wood d13C and leaf traits or latitude of origin. This was unlikely
to be due to excessive experimental error because these traits all
showed significant broad-sense heritability. This finding is con-
sistent with other published reports for Populus. For example, a
previous field study of P. trichocarpa revealed no correlation
between d13C of wood and location of origin for a wide variety
of morphological and physiological traits (McKown et al.,
2014a). However, in a glasshouse study of P. trichocarpa, intrin-
sic WUE was correlated with photosynthetic assimilation and
leaf mass area (Momayyezi & Guy, 2017). Similarly,
P. balsamifera showed a positive correlation of wood and leaf
d13C with latitude in a glasshouse study (Soolanayakanahally
et al., 2009), and no correlation with latitude in a field study
(Soolanayakanahally et al., 2015). Monclus et al. (2009) found a
correlation between d13C and productivity traits (fresh biomass,
height and circumference) for P. deltoides9 P. trichocarpa
hybrids but no correlation of leaf d13C and productivity for
P. deltoides9 P. nigra hybrids (Monclus et al., 2005). The vari-
ability in these results may be due to the effect of environments
in the common gardens or variation in the genotypic responses
to drought (Soolanayakanahally et al., 2015).

Table 4 Genes identified based on Populus trichocarpamultitrait GWAS.

Gene modela Trait P-valueb Functional annotationa

Potri.001G173900 Leaf area, leaf dry weight, leaf length, leaf width 1.61E-08 Plant tudor-like RNA-binding protein
Potri.001G174300 Leaf area, leaf dry weight, leaf length, leaf width 9.15E-08 NA
Potri.001G189300 Leaf area, leaf dry weight, leaf length, leaf width 3.30E-08 NA
Potri.001G371800 Leaf aspect ratio, specific leaf area 7.96E-08 NA
Potri.001G411800 Carbon isotope, leaf area, stomatal density 2.41E-08 EF-hand calcium-binding domain containing protein
Potri.002G055400 Leaf area, leaf dry weight, leaf length, leaf width 3.28E-08 Phytochrome interacting factor 4
Potri.002G145100 Carbon isotope, leaf area, stomatal density 2.62E-08 Plant-specific transcription factor YABBY family protein
Potri.003G165400 Leaf aspect ratio, specific leaf area 6.62E-08 Gem-like protein 5
Potri.004G111000 Leaf area, leaf dry weight, leaf length, leaf width 4.72E-08 Galacturonosyltransferase 9
Potri.004G153400 Leaf aspect ratio, specific leaf area 6.59E-08 Similar to RAS-related GTP-binding protein
Potri.005G097900 Leaf area, SPAD, stomatal density 4.29E-08 Similar to oxidoreductase; 2OG-Fe(2)

oxygenase family protein
Potri.006G132500 Leaf area, leaf dry weight, leaf length, leaf width 1.57E-12 Ribosomal protein L4/L1 family
Potri.006G134200 Carbon isotope, leaf area, SPAD, stomatal density 5.29E-08 Lysine-ketoglutarate reductase/saccharopine

dehydrogenase bifunctional enzyme
Potri.008G121700 Carbon isotope, leaf water potential, stomatal density 5.43E-09 NA
Potri.008G144100 Leaf area, leaf dry weight, leaf length, leaf width 5.37E-08 Regulatory particle triple-A ATPase 6A
Potri.009G015500 Carbon isotope, leaf area, stomatal density 8.76E-09 Mitochondrial transcription termination

factor family protein
Potri.012G065600 Leaf area, petiole length, height 3.24E-08 Leo1-like family protein
Potri.014G136400 Petiole diameter, petiole length, specific leaf area 2.66E-08 LRR receptor-like serine/threonine-protein

kinase RKF3-related
Potri.016G071700 Carbon isotope, leaf area, SPAD, stomatal density 1.36E-08 NA
Potri.019G021600 Leaf area, leaf dry weight, leaf length, leaf width 8.87E-08 FtsH extracellular protease family

Carbon isotope, height, leaf area, petiole length 1.56E-08

NA, not available.
aGene models are annotated using v3.1 of the P. trichocarpa genome.
bSingle nucleotide polymorphism (SNP) P-values < 19 10�7.
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(a)

(c)

(e)

(b)

(d)

(f)

Fig. 5 Manhattan plots comparing GEMMA univariate and multivariate GWAS in Populus trichocarpa. The colours of the dots correspond to single-
trait or multitrait associations. P-values are converted to �log10 (P-value). Single nucleotide polymorphisms (SNPs) above red lines passed
Bonferroni correction test (P ≤ 7.379 10�9), SNPs above blue lines are considered suggestive associations (P ≤ 19 10�7). Only SNPs with
P ≤ 19 10�3) are plotted. (a) Carbon isotope, stomatal density, and leaf area. (b) Allelic effects of SNP near Potri.009G015500 (c) Leaf area, leaf
dry weight, leaf length, and leaf width. (d) Allelic effects of SNP near gene Potri.006G132500. (e) Leaf aspect ratio and specific leaf area. (f)
Allelic effects of SNP near gene Potri.001G371800. (b, d, f) SNPs depicted are circled in the corresponding Manhattan plots and the error bars
represent � SEs for rescaled phenotypic values.
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Enhanced power with multitrait GWAS

Despite a relatively large sample size and the use of whole-
genome SNP data, single-trait GWAS for 14 traits revealed only
four loci with suggestive associations and, collectively, these
explain only a very small percentage of variance in the pheno-
types. By contrast, multitrait GWAS for 12 combinations of a
subset of these traits identified 32 SNPs in or near 20 genes. It
appears that the overall power of the analysis was moderately
improved for most trait combinations compared with the corre-
sponding single-trait GWAS. The power of multitrait GWAS
depends on multiple factors, including SNP effect size, direction
of effect (positive vs negative), PVE by the SNP, and trait correla-
tions (Zhou & Stephens, 2014; Porter & O’Reilly, 2017). Addi-
tionally, because many of our traits were measured without
replication, the multitrait analyses may have provided more accu-
rate estimates of the underlying phenotypes due to covariance of
some of the traits. Although we used the presumed functional
relationship and the correlations of the traits to form the multi-
trait sets for this study, we cannot determine the relative effects of
these factors in these specific analyses, although this has been
explored elsewhere through simulation studies (Zhou &
Stephens, 2014; Porter & O’Reilly, 2017). Nevertheless, we can
gain some insights by examining the PVE of the significant SNPs
from multitrait GWAS in the corresponding single-trait analyses

to indirectly infer the contribution of each of the component
traits. In the following section we explore this approach using
case studies from each of the three categories defined above.

Category 1

This category includes multitrait GWAS with increased power
for the same (or nearby) SNP positions as in the single-trait
GWAS. The multitrait GWAS that includes carbon isotope, leaf
area and stomatal density (CI-LA-SD) well represents this cate-
gory (Fig. 5a). The multitrait GWAS detected four suggestive
SNPs, each of which was in approximately the same position as a
non-significant peak from at least one of the corresponding sin-
gle-trait GWASs. Examination of the effect plot for the SNP with
the highest significance (Fig. 5b) suggests that the multitrait
GWAS may be capturing a pleiotropic effect in this case, as two
of the traits, d13C and stomatal density, both had higher means
for homozygotes for the major allele compared with the other
genotype classes. A similar pattern is evident for the peaks on
Chr01 and Chr02, although in these cases the allelic effects are in
opposite configurations for leaf area and stomatal density
(Fig. S8), possibly reflecting a weak negative correlation between
these traits.

Examination of provisional annotations and direct functional
linkages for the genes closest to the associated SNPs provides

Phenotype Coexpressed gene

Associated metaboliteAssociated SNP

Potri.016G057400

Potri.005G158800

Potri.002G145100

Potri.003G000400

Potri.018G129800

Potri.003G091200

Potri.015G132800

CI_LA_SD

Potri.009G015500

metabolomics_1120_C1_219_16.2 

metabolomics_1120_C1_294_14.9 

metabolomics_1120_C1_171_19.1 

catechol glucoside 
2,6-cyclohexadiene-1,2-diol

Potri.T108000

Potri.011G129100

secoisolariciresinol 

Potri.007G134000

Potri.009G158900

metabolomics_1120_C1_328_9.22 

coumaroyl caffeoyl glycoside 

Potri.001G411800

phenolic 

caffeoyl-quercetin glycoside 

Potri.004G200400

caffeoyl-quercetin glycoside 

Potri.001G381000Potri.006G067800

Potri.001G202100

Potri.001G117000

Potri.001G311400

Potri.014G066700

Potri.015G039100

Potri.002G145100 
(YABBY gene family)

Potri.006G0667800,
Potri.018G129800 
(YABBY5 gene 
subfamily)

Potri.015G039100 
(WUSCHEL-related 
homeobox gene family)

Potri.009G015500 
mTERF (mitochondrial 
Transcription TERmination
Factor) family

Calcium-binding EF hand family proteins

Potri.009G158900
Late embryogenesis 
abundant (LEA) protein family

Fig. 6 Merged network for carbon isotope, leaf area and stomatal density (CI_LA_SD) in Populus trichocarpa. Networks of co-expressed genes were based
on RNA-seq data for 14 tissue types from the Phytozome Populus gene atlas. Networks of associated metabolites were based on GWAS for the same
population that was used here (Weighill et al., 2018).

New Phytologist (2019) No claim to US Government works

New Phytologist� 2019 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist10



further insight into the possible mechanisms by which these loci
affect these three traits. For example, Potri.002G145100, a puta-
tive YABBY-1-related axial regulator, was co-expressed with 12
other genes, including another YABBY-5 transcription factor and
a WUSCHEL-related homeobox gene family member, possibly
representing a large regulatory network (Fig. 6).

Another possible regulatory network contained
Potri.001G411800, an EF-hand Calcium-Binding Domain pro-
tein. In P. trichocarpa, Potri.001G411800 has moderate expres-
sion in early and late dormant bud early male and female
development, root tip, young, immature and first fully expanded
leaves (Goodstein et al., 2012). This gene was co-expressed with
six other genes, including another EF-hand family protein,
Potri.011G129100. Calcium is an important second messenger
in eukaryotes and has important roles in cell signalling and
response to biotic and abiotic stresses and developmental cues
(Sanders et al., 2002; Chen et al., 2015; Ranty et al., 2016; Zhu,
2016; Edel et al., 2017). The EF-hand motif is the most common
and highly conserved calcium-binding motif (Lewit-Bentley &
R�ety, 2000; Zeng et al., 2017).

This co-expression network provides further evidence that
Potri.001G411800 is involved in responses to abiotic stress. It is
co-expressed with a late embryogenesis abundant (LEA) hydrox-
yproline-rich glycoprotein (Potri.009G158900), a group that has
a major role in responses to drought, salinity and, osmotic and
temperature-related stresses (Gao & Lan, 2016; Magwanga et al.,
2018). Potri.001G411800 is also associated with 10 different
metabolites in the same population, including several that are

related to plant development and stress responses (Fig. 6). For
example, at least five of the metabolites are identified as
flavonoids or flavonoid glycosides, including caffeoyl-quercetin
glycoside, coumaroyl caffeoyl glycoside, and catechol glycoside.
Flavonoids are known to have antioxidant properties that are
induced under abiotic and biotic environmental stresses
(Hern�andez et al., 2009). Quercetin glycosides also play an
important role in plant growth and development (Parvez et al.,
2004). More importantly, they are known to have a role in
osmotic adjustment in which the deleterious effect of water
deficit is minimised by the active accumulation of solutes such as
glycosides and phenolics as a response to drought (Tschaplinski
et al., 2019).

Category 2

This category includes cases in which the multitrait GWAS had
increased power, but the associated loci did not overlap with peaks
in the single-trait GWAS. The multitrait set that includes leaf area,
leaf dry weight, leaf length and leaf width (LA-LD-LL-LW) well
represents this category (Fig. 5c). We detected 10 significant SNPs
in the multitrait GWAS compared with none in the corresponding
single-trait GWAS, and the peaks were largely non-overlapping.
The locus with the highest association in the multitrait analysis
showed similar patterns of genotypic means for all four traits, con-
sistent with an additive effect (Fig. 5d). Most of the other cases
had low minor allele frequency and high variation among pheno-
types for homozygotes for the minor allele (Fig. S9; Table S5).

Fig. 7 Merged network for leaf area, dry weight, leaf length, and leaf width (LA_LD_LL_LW) and leaf aspect ratio-specific leaf area (AR_SL) in Populus

trichocarpa. Symbols are as defined in Fig. 6.
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(a)

(b)

(c) (d)

(e) (f)

Fig. 8 Effects of PdGAUT9.1 downregulation on leaf size in Populus deltoides. (a) Gene model for PtGAUT9.1 (Potri.004G111000) from Populus
trichocarpa v3.0 genome. Black boxes indicate the 50 and 30 untranslated regions (UTRs); purple boxes indicate exons and lines indicate introns. The
indicated RNAi targeted sequence was 123 bp. The sequences used for quantitative RT-PCR are indicated by arrows. (b) Schematic representation of
PtGAUT9.1 RNAi silencing construct used to generate P. deltoides PdGAUT9.1-KD transgenic lines. (c) Relative transcript abundance of PdGAUT9.1
(Potri.004G111000) and PdGAUT9.2 (Potri.017G106800) as determined by quantitative RT-PCR analysis of leaf RNA from glasshouse-grown 3-month-
old poplar WT, vector control (V. control.1) and PdGAUT9.1-KD lines (KH28.1, KH28.3 and KH28.12). Expression of PdGAUT9.1 in poplar WT was set to
1 and 18S rRNA was used as a reference gene. Error bars are � SE, n = 6. Differences were tested by one-way ANOVA (*, P < 0.05; **, P < 0.001). (d) Leaf
phenotype (the sixth leaf from the apex) of P. deltoides control (WT and VC) and PdGAUT9.1-KD line (KH28.12) from 3-month-old plants. (e) Length and
(f) width of leaves from different developmental stages of three different 3-month-old GAUT9-KD transgenic lines (KH28.1, KH28.3 and KH28.12). Every
other leaf of 10 plants was measured starting with the second leaf from the apex. The error bars represent� SEs for leaf length and leaf width.
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This is likely to be when joint estimation of the variances provides
more power to detect differences among the genotypic classes,
resulting in significant multitrait associations for loci that showed
no association with the individual component traits.

This case study also provides an example of the use of multiple
lines of evidence to provide further support for relatively weak
associations (Weighill et al., 2018). For example, the SNP
Chr04_9996091 had a P-value of 4.729 10�8, which does not
pass a strict FDR with a = 0.05, so we classified this as a ‘sugges-
tive’ association. However, we have multiple lines of evidence
that the closest gene model, Potri.004G111000, is involved with
leaf development. This gene encodes a putative galacturonosyl-
transferase that is moderately expressed in the first fully expanded
leaf, young and immature leaves, and pre-dormant and fully open
vegetative buds (Goodstein et al., 2012). The closest Arabidopsis
thaliana homolog of this gene, AT3G02350, encodes a gene
annotated as galacturonosyltransferase 9 (GAUT9), for which
enzyme activity has not yet been established. GAUT9 belongs to
the GAUT gene family of proven and putative pectin homogalac-
turonan (HG) galacturnosyltransferases (Sterling et al., 2006;
Atmodjo et al., 2013; Biswal et al., 2018b; Voiniciuc et al.,
2018). Downregulation of the PdGAUT9.1 gene caused
increased leaf length and width in both developing and mature
leaves of glasshouse-grown P. deltoides, confirming the role of the
gene in leaf development in Populus.

Other GAUT genes have also been shown to affect cell wall
properties and leaf size in Populus. Downregulation of a
GAUT12 homolog in P. deltoides showed decreased xylan and
pectin content in the cell wall and increased biomass yield (Biswal
et al., 2015), while overexpression showed a reduction in overall
plant productivity and resulted in smaller leaves, reduced xylem
cell numbers and size, and an increase in the amount of xylose
and galacturonic acid in the cell wall (Biswal et al., 2018b).
Downregulation of GAUT4 in P. deltoides resulted in decreased
pectic homogalacturonan and rhamnogalacturonan II and
increased plant height, diameter, leaf area, and biomass (Biswal
et al., 2018a). Additional evidence supporting increased leaf
growth with decreases in pectin is provided by reports of
increased expansion of Arabidopsis rosette leaves resulting from
overexpression of polygalacturonase, an enzyme that degrades
pectic homogalacturonan (Rui et al., 2017).

Co-expression analysis lends further support for the involve-
ment of this gene in cell wall biosynthesis. Potri.004G111000
(GAUT9) was co-expressed with 17 other gene models and one
metabolite that are cell-wall related (Fig. 7; Tables S6, S7). For
example, Potri.004G123500, is annotated as a member of the
uridine diphosphate (UDP) glycosyltransferase (UGT) superfam-
ily. In P. trichocarpa, this gene had moderate expression in pre-,
early and late dormant buds, young and immature and first fully
expanded leaves, and stem nodes and internodes (Goodstein
et al., 2012). Another gene, Potri.010G102300, encodes a
xyloglucan endotransglucosylase that is a member of the Gly-
coside Hydrolase Family 16 and which is also expected to affect
cell wall properties (Nishikubo et al., 2011; Yang et al., 2014).

Two other genes with suggestive associations to leaf mor-
phology characteristics were co-expressed with a large number

of other genes with potential regulatory functions.
Potri.008G144100 is similar to the AAA-ATPase subunit of the
26S proteasome complex, and was co-expressed with eight other
genes with putative roles in protein degradation or synthesis, plus
an ATP-dependent caseinolytic protease (Potri.018G018800)
potentially involved in lipid processing (Fig. 7; Table S7).
Another gene associated with leaf morphology, Potri.001G173900,
encodes a Tudor-like RNA-binding protein with conserved ENT
and Agenet domains. There is emerging evidence that the latter
domain may be involved in transcriptional regulation in
Arabidopsis (Zhang C. et al., 2018). This gene was co-expressed
with 49 other genes with putative roles in protein degradation or
RNA regulation, as well as nine genes with annotations related to
carbohydrate metabolism (Tables S6, S7). These two genes are
excellent candidates as master regulators of leaf morphology, pos-
sibly mediated by cell wall modification.

Drost et al. (2015) identified a major QTL peak on Chr10 for
leaf width in an interspecific P. trichocarpa9 P. deltoides pseu-
dobackcross family. This peak is in close proximity to one of our
GWAS peaks for LA�LD�LL�LW. An ADP-ribosylation factor
GTPase (PtARF1) was the prime candidate gene in the hybrid
family based on eQTL analysis and functional assays (Drost et al.,
2015). However, this gene was over 200 kb from the closest associ-
ated SNP in our study (Potri.010G254700, a leucine-rich repeat
transmembrane protein kinase). Furthermore, PtARF1 did not
appear in our networks, indicating that it was not even weakly
associated with leaf morphology in our population, and was not
co-expressed or co-methylated with any weakly associated genes.
This may indicate that different mechanisms control leaf morphol-
ogy within P. trichocarpa compared with interspecific hybrids.
However, the hypothesised mechanism for PtARF1 focuses on its
role in vesicle-mediated trafficking of the PIN protein to regulate
auxin gradients (Drost et al., 2015), which is broadly consistent
with the genes in our network that affect cell wall extensibility and
carbohydrate metabolism. Intriguingly, the co-expression network
of Potri.001G173900 includes a gene (Potri.017G101100) for
which the best homolog in Arabidopsis (AT3G02260) is a puta-
tive calossin-like protein required for polar auxin transport.

Category 3

This case study includes multitrait GWAS sets that had lower top
SNP-trait association signals compared with the corresponding
single-trait GWAS for some loci. The multitrait GWAS set that
included leaf aspect ratio and specific leaf area (AR-SL) well rep-
resents this category (Fig. 5e). We detected four loci with sugges-
tive associations for multitrait GWAS compared with two for
single-trait GWAS for specific leaf area (Fig. 5e). For locus
Chr01_38557469, the association for SL was stronger than that
for the AR�SL combination, and that locus explained 3.78% of
the variation in SL (Table S5). By contrast, there was no hint of
an association for AR at that locus, possibly due to high variation
in the minor allele homozygous individuals (Fig. 5f). The loci for
which the multitrait association showed the lowest P-value follow
a similar pattern to those from categories 1 and 2, with both traits
showing differences among the genotypes (Fig. S10). For the
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AR-SL multitrait we detected four gene models, out of which
one gene model overlapped with the single-trait GWAS for speci-
fic leaf area (Fig. 7). One of these, Potri.008G014000, belongs to
the HSP-20-like chaperones superfamily. This gene is co-
expressed with 49 other genes in P. trichocarpa, including 22 with
putative roles in protein degradation or RNA processing, suggest-
ing that this is another important regulatory network for leaf
morphology (Table S7).

Comparison with previous GWAS studies in P. trichocarpa

We compared all genes identified from single-trait as well as the
multitrait GWAS with the previous GWAS studies in
P. trichocarpa using 34K Populus SNP array data (McKown et al.,
2014b,c), but despite the moderate (0.2–0.4) heritabilities of
most of the comparable traits such as leaf traits, height, chloro-
phyll content and stomatal density in these studies, none of the
22 genes we identified in our study overlapped with the previous
studies. This difference might be due to the difference in the
genotypes and the common garden used for our study, or to
higher phenotyping error in the present study. It also likely to
reflect the more targeted genome sampling in the previous stud-
ies, which only assayed 3543 genes that were preselected based on
annotations and other functional information (Geraldes et al.,
2011). Nevertheless, we believe that the whole-genome rese-
quencing of 882 trees used in our study allowed the detection of
robust genetic variants underlying some phenotypic traits. Some
corroboration for these associations was provided by patterns of
expression and co-expression, intersection with genetic control of
metabolites, and direct confirmation of mutant phenotypes.

Conclusions

We have presented one of the most comprehensive GWAS stud-
ies to date for P. trichocarpa in terms of the size of the SNP
dataset and the number of genotypes. Taking advantage of the
natural variation present in the population and the power of mul-
titrait association, we detected candidate genes that were associ-
ated with adaptive morphological and physiological traits. Some
of these may represent genes with potentially pleiotropic effects
on adaptive traits including leaf morphology, and WUE. These
have great potential for further functional characterisation and
can be a suitable target for breeding programmes as they capture
functional and structural relationships among the traits that are
not apparent with single-trait GWAS. Furthermore, the network
analysis added an extra layer of information that provided further
independent lines of evidence supporting the involvement of
these genes in their associated phenotypes and provides clues
about possible mechanisms of action. This step is important in
functional annotation, which remains a major challenge for recal-
citrant model organisms such as forest trees.
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Fig. S1 Manhattan plots comparing GEMMA univariate and
multivariate GWAS in P. trichocarpa for (a) stomatal density, car-
bon isotope, and pre-dawn leaf water potential; (b) height, leaf
area, and petiole length; and (c) height, petiole diameter, and
petiole length.

Fig. S2 Manhattan plots comparing GEMMA univariate and
multivariate GWAS in P. trichocarpa for (a) leaf area, stomatal
density, and SPAD; (b) leaf area, petiole length, height, and car-
bon isotope; and (c) leaf area, stomatal density, SPAD, and car-
bon isotope.

Fig. S3 Manhattan plots comparing GEMMA univariate and
multivariate GWAS in P. trichocarpa for (a) carbon isotope, pre-
dawn leaf water potential; (b) leaf dry weight, petiole diameter,
SPAD; (c) petiole diameter, petiole length, specific leaf area.

Fig. S4 QQ-plot for single-trait GWAS in P. trichocarpa for car-
bon, leaf area, and stomatal density, and the corresponding mul-
titrait GWAS with all three traits.

Fig. S5 QQ-plot for single-trait GWAS in P. trichocarpa for leaf
area, leaf dry weight, leaf length and leaf width, and the corre-
sponding multitrait GWAS with all four leaf traits.

Fig. S6 QQ-plot for single-trait GWAS in P. trichocarpa for leaf
aspect ratio and specific leaf area and the corresponding multitrait
GWAS with both traits.
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Fig. S7 Pearson correlation of GAUT9 (Potri.004G111000) gene
expression in leaf and developing xylem of P. trichocarpa with
genotype at locus Chr04_9996091.

Fig. S8 Allelic effects plots for single traits underlying the carbon
isotope�leaf area�stomatal density multitrait association analysis
in P. trichocarpa.

Fig. S9 Allelic effects plots for single traits underlying the leaf
area�leaf diameter�leaf length�leaf width multitrait association
analysis in P. trichocarpa.

Fig. S10 Allelic effects plots for single traits underlying the leaf
aspect ratio�specific leaf area multitrait association analysis in
P. trichocarpa.

Table S1 SNP PC covariates used in P. trichocarpa single- and
multitrait GWAS analyses.

Table S2 Pearson pairwise correlation of morphological and
physiological traits collected in P. trichocarpa association. Num-
bers below the diagonal represent correlations and numbers
above the diagonal represent P-values. Red and blue colours indi-
cate positive and negative correlations or P-values, respectively.

Table S3 PCA loadings of the traits of 13 morphological and
physiological traits used in a PCA biplot (Fig. 3) collected in
P. trichocarpa association plantation in Corvallis, Oregon, USA.

Table S4 Pearson correlation of morphological and physiological
traits with latitude of origin in P. trichocarpa.

Table S5 Estimated percentage of variance explained (PVE) in
P. trichocarpa.

Table S6 Significant SNPs detected by P. trichocarpa single- and
multitrait GWAS based on a value of P < 19 10-7 with nearest
genes and their expression levels, putative gene functions and
closest Arabidopsis thaliana (AT) homologs.

Table S7 Gene models detected by P. trichocarpa single- and
multitrait GWAS based on a value of P < 19 10-7, co-expressed
genes, gene description and linked metabolites from network
analysis using CYTOSCAPE.
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