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Abstract
Genetic engineering of trees to improve productivity, wood quality, and resistance to biotic and abiotic stresses has been the
primary goal of the forest biotechnology community for decades. We review the extensive progress in these areas and their
current status with respect to commercial applications. Examples include novel methods for lignin modification, solutions for
long-standing problems related to pathogen resistance, modifications to flowering onset and fertility, and drought and freeze
tolerance. There have been numerous successful greenhouse and field demonstrations of genetically engineered trees, but
commercial application has been severely limited by social and technical considerations. Key social factors are costly and
uncertain regulatory hurdles and sweeping market barriers in the form of forest certification systems that disallow genetically
modified trees. These factors limit and, in many cases, preclude field research and commercial adoption. Another challenge is the
high cost and uncertainty in transformation efficiency that is needed to apply genetic engineering and gene editing methods to
most species and genotypes of commercial importance. Recent advances in developmental gene-based transformation systems
and gene editing, if combined with regulatory and certification system reform, could provide the foundation for genetic engi-
neering to become a significant tool for coping with the increasing environmental and biological stresses on planted and wild
forests.
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Introduction

It has beenmore than 30 yr since the first report of a transgenic
tree (Fillatti et al. 1987). In the intervening years, hundreds of

transgenic constructs have been transformed into forest trees,
most frequently varieties of poplar (Populus) species and hy-
brids, but including several other genera such as Acacia,
Betula, Eucalyptus, Picea, and Pinus (see reviews by
Confalonieri et al. 2003, Merkle and Narin 2005, Nehra et
al. 2005). Despite genetic engineering (GE) technology being
a boon to research on tree biology, the commercial use of
transformed trees remains very limited. In 2002, two lines of
Bacillus thuringiensis (Bt) toxin-producing poplar were au-
thorized for commercial planting in China (James 2015), and
in 2015 FuturaGene obtained permission for the commercial
release in Brazil of a single line of transgenic Eucalyptuswith
improved growth (Anonymous 2015). This is in sharp contrast
to the rate of adoption of GE technology in agricultural crops.
Fertile GE soybean and maize were first reported at approxi-
mately the same time as poplar (Hinchee et al. 1988; Gordon-
Kamm et al. 1990), and consequently, transgenic lines of these
and several other row crops were approved for commercial
release in the USA in the mid-1990s. Since then, many other
approvals carrying single or stacked input and output traits
have been approved.
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Despite many challenges, tree biotechnology has made sig-
nificant progress in recent years. Reference genome sequences
have become available for commercially valuable timber trees
such as Populus trichocarpa (Tuskan et al. 2006), Eucalyptus
grandis (Myburg et al. 2014), spruce (Picea glauca and Picea
abies) (Birol et al. 2013; Nystedt et al. 2013), Pinus taeda
(loblolly pine) (Neale et al. 2014), Pseudotsuga menziesii
(Douglas-fir) (Neale et al. 2017), and Fraxinus excelsior
(European ash) (Sollars et al. 2017). Genomes of several com-
mercially important fruit or specialty trees such as Malus
domestica (apple, cv. Golden Delicious) (Velasco et al.
2010), Prunus persica (peach, cv. Lovell) (The International
PeachGenome Initiative 2013),Citrus sinensis (sweet orange)
(Xu et al. 2013), Theobroma cacao (cocoa, cv. Criollo)
(Argout et al. 2011), and Camellia sinensis (tea, cv.
Yunkang 10) (Xia et al. 2017) have also been sequenced. A
combination of an increasing bioinformatic capability and the
decreasing cost of sequencing has increased research teams’
capability to predict the key regulatory genes in various met-
abolic pathways, providing the foundation for GE to modify
the associated traits. Another exciting development is the pro-
liferation of genome editing tools, especially the development
of the CRISPR/Cas9 system and its successful demonstration
in poplar (Jinek et al. 2012; Zhou et al. 2015; Elorriaga et al.
2018). Advances have also been made in overcoming the
recalcitrance in tissue culture and transformation, particularly
in angiosperm tree species. This review will summarize some
of the recent progress in forest biotechnology in relation to the
capacity for GE and gene editing, and then discuss opportu-
nities and obstacles to its commercial application.

Growth and yield

Growth improvements in forestry essentially fall into the cat-
egories of yield potential (greater growth under non-stressful
conditions) and yield preservation (adequate growth, or at
least survival, under stressful conditions). Breeding has also
been directed at improving the traits of trees in ways that
might not necessarily enhance the productivity in terms of
tons of wood produced per hectare but increase the amount
or value of marketable product (e.g., stand uniformity, stem
straightness, and reduced forking). An analysis of gains
resulting from breeding in an agricultural crop, soybean, con-
cluded that increases in productivity over the past 80 yr were
primarily achieved through improving processes that affect
yield potential: increased light interception, increased conver-
sion of energy to biomass (i.e., carbon fixation), and improved
allocation of biomass to the harvested portion of the plant
(Koester et al. 2014). It seems likely that improvements in
yield for trees will fit similar categories as for crops but differ
in preference for energy allocation to woody biomass in the
main stem rather than seed production.

Although it is certain that tree breeding will continue to
make improvements in yield, the potential for transformation
to add genes that supplement what is available in the native
genomes is enticing. Several years ago, Dubouzet et al. (2013)
reviewed many possible strategies to increase tree biomass
using transgenes, which included manipulation of phytohor-
mone pathways to alter tree architecture, improved uptake and
utilization of water and nutrients, modifications to photosyn-
thesis and carbon utilization, and improved tolerance of biotic
and abiotic stresses. Relatively few genes have undergone
testing in tree species.

Regulatory pathways

Manipulation of the biosynthesis and response pathways for
several plant hormones has altered growth in ways that sug-
gest an increase in biomass can be achieved. The most fully
investigated example in forest trees was where increased in-
ternode length and growth could be seen when a gibberellic
acid (GA) biosynthetic enzyme, GA 20-oxidase (GA20ox),
was overexpressed in hybrid poplar (Eriksson et al. 2000).
In contrast, an enzyme that deactivates GA, GA 2-oxidase,
had the opposite effect on growth (Gou et al. 2011; Elias et
al. 2012). One challenge in the strong upregulation of GA 20-
oxidase using the CaMV 35S promoter was that it was asso-
ciated with reduced adventitious root formation (Eriksson et
al. 2000; Niu et al. 2013). Because rooted cuttings are the
method of propagation for elite genotypes of many forest tree
species, there is the likelihood that production could become
less efficient or costs could increase when methods are adjust-
ed to accommodate the GA phenotypes. Furthermore, the phe-
notype suggests the possibility that some of the enhancement
in stem biomass is a result of allocation of energy that would
ordinarily be used in root growth, a potentially risky strategy
for a crop growing multiple years in a field environment.

To investigate whether more tightly regulated modification
of GA synthesis might mitigate some of these effects, several
transformation experiments in hybrid poplar tested GA20ox
driven by a range of promoters. One construct used P.
trichocarpa GA20ox7 expressed by its native promoter,
which is expected to be comparable to an increase in copy
number for an endogenous gene (Han et al. 2011; Lu et al.
2015). Other constructs included a different P. trichocarpa
isoform of GA20ox driven by various Populus promoters
preferentially expressed in shoot tips, internodes, or roots
(Lu et al. 2015) and a pine GA20ox driven by the promoter
from a Populus fasciclin-like gene (DX15) expressed in de-
veloping xylem (Jeon et al. 2016). Each of these constructs led
to a reduction of the abnormal phenotype associated with high
GA production and improved growth in greenhouse experi-
ments when the promoter was PtGA2ox , PtRGL1-
1(REPRESSOR OF GAL3-LIKE), PtGA20ox7 (Lu et al.
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2015), or DX15 (Jeon et al. 2016). However, when the first
two of these were subjected to a second, larger test in the
greenhouse, the growth effect was not confirmed.When tested
in the field, only the RGL1-1 promoter construct provided a
statistically significant growth improvement (Lu et al. 2015).

Recent studies have also evaluated the role of
brassinosteroid biosynthesis on growth. Increased
brassinosteroid synthesis has resulted in increased vegetative
and seed yields in several herbaceous species (Choe et al.
2001; Sahni et al. 2016) but has only recently been examined
in woody species. PtCYP85A3, the putative Populus ortholog
of the Arabidopsis thaliana cytochrome P450 that catalyzes
the final step in brassinolide biosynthesis, was tested in hybrid
poplar Populus trichocarpa. Strong expression of this gene
using the CaMV 35S promoter led to statistically significant
increased growth in greenhouse and field tests (Jin et al.
2017). After 2 yr of growth in the field, the best performing
line had a height 50% greater than the controls and a diameter
more than 30% greater. Multiple secondary cell wall-
associated genes (PtMYB2, PtMYB18, PtMYB20, PtCesA5,
and PtCesA17) were found to be upregulated in the stems of
the PtCYP85A3 overexpressing plants.

A relatively new avenue for increasing wood production
might be found in members of the CLAVATA-LIKE family of
peptide ligands and their receptors. In A. thaliana, CLE41
encodes the precursor for a 12-amino-acid regulatory peptide
known as tracheary element differentiation inhibitory factor
(TDIF), whose receptor is encoded by PXY (reviewed in
Etchells et al. 2015). Mutation of PXY caused production of
abnormal vascular bundles, while constitutive overexpression
of CLE41 led to loss of apical dominance and increased vas-
cular development (Etchells and Turner 2010). The Populus
orthologs of these genes were cloned from and tested in hybrid
poplar; overexpression increased wood formation under
greenhouse conditions and gave normal form, but only when
tissue-specific promoters were used (Etchells et al. 2015). The
promoter from the cambium-expressed Populus homolog of
AINTEGUMENTA was used with the PttPXY coding region,
and the phloem-expressed PttPP2 promoter was used with
PttCLE41. The structure of the wood formed appeared nor-
mal, with increased stem diameter that resulted from more
cells. Increased height growth was associated with larger
leaves and formation of more internodes.

Other genes tested in tree species

The processes of lignin formation and photorespiration release
copious amounts of free ammonia and reassimilation of this
nitrogen is essential for efficient growth. It has been estimated
that, for herbaceous crops, up to 5% of shoot nitrogen can be
lost as NH3 during the growing season (Matsson and
Schjoerring 1997). Under conditions of abundant nitrogen,

the efficiency of recycling this NH3 might not have a large
effect on yield, but under typical field conditions, it is plausi-
ble that there would be a potential benefit. Various isoforms of
glutamine synthetase (GS) perform the primary role in recov-
ery of ammonia byproduct from photorespiration and lignin
biosynthesis (Wallsgrove et al. 1987; Suárez et al. 2002). In
hybrid poplar, constitutive expression of a pine GS1a gene
was associated with increased growth under both greenhouse
and field conditions (Gallardo et al. 1999; Jing et al. 2004;
Coleman et al. 2012).

Some genes that have been tested in Populus deltoides to
determine their effects on cell wall composition also exhibited
increased growth. For example, an RNAi construct directed
against a galacturonosyl transferase homolog (homologous to
A. thaliana GAUT12) produced gains of 17–38% for shoot
dry weight in a greenhouse trial (Biswal et al. 2015).

An additional pool of potential growth enhancing genes
can be found in patents and patent applications. The latter in
particular may have been filed on preliminary results and
should be considered speculative. Tuskan and Kalluri (2016)
described how RNAi directed against a Populus IDQ signal-
ing protein led to increased biomass. Kirst (2014) described a
poplar gene that contains a conserved DUF3339 domain, of
interest because it was associated with improved growth in a
(P. trichocarpa × P. deltoides) × P. deltoides pseudo-back-
cross. Expression of a P. trichocarpa allele of this gene in
transgenic Populus tremula × Populus alba was found to
cause increased size of vessel elements in the xylem, im-
proved hydraulic conductivity, and increased growth rates un-
der greenhouse conditions.

Researchers at SweTree Technologies have disclosed se-
quences from poplars that potentially can improve yield based
on greenhouse experiments with transformed trees. Hertzberg
et al. (2015a) were issued a patent with claims for improving
growth via overexpression of a histone lysine methyltransfer-
ase, which provided an 11% increase in average diameter of
transgenic lines as compared to the average of the control
trees. A second patent claims reduced expression of a
TRAF-like protein, a putative ubiquitinyl hydrolase, which
produced a 24% increase in plant height relative to controls
(Hertzberg et al. 2015b).

Another application describes enhancement of light capture
by expression of protein chromophores, such as green fluores-
cent protein. The preferred chromophore would include a
chloroplast targeting peptide and an excitation frequency in
the yellow-green color range, where chlorophyll has an ab-
sorption minimum. The application reports increased growth
for transgenic Eucalyptus expressing mCherry (Siegel et al.
2013).

The examples provided above still need validation through
extensive field testing, and it may be that few of them end up
providing a commercially valuable benefit. To guard against
this, additional candidates should be pursued. Genome-wide
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association studies, such as those underway in Populus
(McKown et al. 2014), are a means of identifying genes and
alleles that contribute to increased biomass and thus may be
suitable targets for investigation.

There are also multiple genes that have provided evidence
of enhanced biomass production in GE plants using herba-
ceous species (Lima et al. 2017). Improved growth was
achieved in tobacco (Nicotiana tabacum) via reduction of
nonphotochemical quenching by expressing a combination
of violaxanthin de-epoxidase, zeaxanthin epoxidase, and ex-
ogenous photosystem II subunit S (Kromdijk et al. 2016).
Increased expression of combinations of several genes in-
volved in carbon flux, sedoheptulose-1,7-bisphosphatase
(SBPase), fructose-1,6-bisphosphate aldolase (FBPA), a sub-
unit of glycine decarboxylase (GDC-H), and a chloroplast-
targeted inorganic carbon transporter (ictB) from cyanobacte-
rium Synechococcus also yielded increased growth in trans-
genic A. thaliana or tobacco (Simkin et al. 2015, 2017). The
glutamine synthetase pathway for ammonia reassimilation in-
cludes glutamine oxoglutarate aminotransferase (GOGAT, al-
so known as glutamate synthase), glutamate dehydrogenase
(GDH), and isocitrate dehydrogenase, which are further po-
tential targets for manipulation (Suárez et al. 2002; McAllister
et al. 2012).

Beyond these examples, the developing field of synthetic
biology offers possibilities for more dramatic improvements
in light capture, light energy conversion, and carbon fixation
(Schwander et al. 2016). Potential avenues of research include
altering the light harvesting machinery to make use of near
infrared wavelengths, reengineering ribulose-1,5-
bisphosphate carboxylase, and devising new, more efficient
pathways for recycling the products of photorespiration
(discussed in Ort et al. 2015; Betti et al. 2016).

Cell wall and wood properties

The economic value of woody biomass is inherently associat-
ed with the biochemical components of the cell wall, which
are important materials supporting commodity products,
chemicals, energy, and other byproducts. Thus, there has been
a strong interest in modifying cell wall traits to enhance sec-
ondary xylem formation or improve ease of use of the com-
ponents. The two predominant cell wall components, cellu-
lose and lignin, have been researched for decades.
Hemicelluloses, the third major type of polymer, have also
been the subject of GE studies, as have cell wall-associated
pectins. On a molecular level, most of the studies have fo-
cused on ways to improve cellulose content or the efficiency
of extracting it from its association with lignin. Additionally,
conversion of biopolymers from feedstocks into biofuels has
been studied; these biopolymers offer a promising and sustain-
able alternative to traditional petroleum-derived energy.

Tables 1 and 2 summarize the recent transgenic studies in tree
species on genetic modification of cell wall polysaccharides
and lignin, respectively.

Cellulose

Cellulose, the most abundant biopolymer in the world, repre-
sents approximately one-half of the woody biomass produced
by trees and is composed of individual (1–4) β-linked D-glu-
can chains bound together to form highly ordered semi-
crystalline microfibril bundles, which serve as a scaffold
around which other cell wall polymers assemble (Taylor et
al. 1992; Mellerowicz et al. 2001). Cellulose in secondary cell
walls plays a fundamental role in preserving the structural
integrity required for vertical growth in trees. Cellulose is
believed to be typically synthesized by enzyme complexes
composed of subunits encoded by three co-expressed genes,
with different isoforms of the subunits used during production
of primary and secondary cell walls (Kumar and Turner 2015).
Repressing the expression of any one of the secondary cell
wall-specific cellulose synthase genes negatively impacts cel-
lulose deposition. For example, silencing of a PtdCesA8 trans-
gene in Populus tremuloides substantially reduced cellulose
content, resulting in collapsed xylem vessels and stunted ver-
tical growth (Joshi et al. 2011).

Endoglucanases have been shown to play a key role in the
ordered deposition of cellulose in primary cell walls (Nicol et
al. 1998; Sato et al. 2001). Studies investigating the mis-
regulation of KORRIGAN-like genes in trees have provided
insight into their role in secondary cell wall cellulose deposi-
tion. RNAi suppression of various tree orthologs of
KORRIGAN genes in GE white spruce (P. glauca), poplar
(P. trichocarpa), and hybrid poplar have resulted in reductions
in cellulose content, and in the case of angiosperms irregular
xylem tissue (Maloney and Mansfield 2010; Maloney et al.
2012; Yu et al. 2013, 2014). In hybrid poplar, RNAi suppres-
sion of a KORRIGAN-like gene was reported to not only
reduce cellulose deposition, but to increase cellulose crystal-
linity and decrease microfibril angle compared to wild-type
(Maloney and Mansfield 2010). This work indicates that
KOR-like genes influence not only cellulose deposition, but
the ultrastructure of cellulose in secondary cell walls.

Researchers looking to modify cellulose in trees have
also focused on altering carbon allocation to the cellulose
synthase complex (CSC) by modifying the metabolic
pathways that lead to the production of UDP-glucose,
the immediate biosynthetic precursor to cellulose. One
study used UDP-glucose pyrophosphorylase (UGPase),
which catalyzes the conversion of glucose-1-phosphate
to UDP-glucose (Kleczkowski 1994). Poplar overexpress-
ing a UGPase from Acetobacter xylinum displayed a sub-
stantial increase in cellulose content, but also exhibited a
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slight reduction in growth potential (Coleman et al. 2007).
A second study tested overexpression of a cotton sucrose
synthase (SuSy), which catalyzes the formation of UDP-
glucose and fructose from sucrose. This led to more crys-
talline cell walls, enhanced wood density, and thicker cell
walls without impacting plant growth and development in
poplar (Coleman et al. 2009). In both cases, introduction
of SuSy and UGPase transgenes resulted in an increase in
the soluble sugars present in leaf tissue, indicating that
altering the availability of UDP-glucose influences sink
strength in trees (Coleman et al. 2007, 2009). Poplar re-
lies on a passive mechanism to move photoassimilate
from source to sink tissues (Turgeon and Medville 1998)
and increasing available UDP-glucose promotes the real-
location of carbon skeletons toward cell wall deposition,
thereby reducing the soluble sugars present in sink cells
and promoting movement of photoassimilates toward sink
tissue. Subsequent findings showed that RNAi suppres-
sion of two endogenous SuSy genes in hybrid poplar re-
sulted in no significant changes in relative composition of
cellulose, lignin, and hemicellulose; however, wood den-
sity was substantially decreased (Gerber et al. 2014).
Suppression of these genes also resulted in a reduction
in the available pools of hexose phosphates, providing

further support that in poplar SuSy genes play a role in
regulating carbon partitioning to wood cell walls (Gerber
et al. 2014).

There is also evidence that further upstream modifica-
tion of sucrose biosynthesis in trees can influence xylem
density and wood properties. Sucrose is synthesized in
source tissues from UDP-glucoase and fructose-6-
phosphate via a two-step process by sucrose-6-phosphate
synthase (SPS) and sucrose-6-phosphatase (SPP) before
being transported to sink tissues. Hybrid poplar overex-
pressing an A. thaliana SPS-SPP fusion construct
displayed an increase in wood density, an increase in sol-
uble sugars within source leaves, and an increase in over-
all growth characteristics (Maloney et al. 2015).

Once arriving in sink tissues, sucrose enters metabo-
lism by being broken down either into UDP-glucose and
fructose, or into glucose and fructose, which can be phos-
phorylated before being metabolized for use in cell wall
biosynthesis (Sturm and Tang 1999). RNAi suppression
of fructokinases (FRKs) in hybrid poplar (P. tremula ×
P. tremuloides) resulted in thinner cell walls and a reduc-
tion in cellulose, indicating that FRK can also influence
carbon partitioning to cell wall biosynthesis (Roach et al.
2012). Taken together, these studies strongly suggest that

Table 1 Examples of genetic modifications made to cell wall components in trees, with emphasis on hemicellulose, pectin, and cellulose

Cell wall
component

Gene function Gene expression change Transformant species References

Hemicellulose Glycosyl transferase PoTG47C ↓ Populus alba × P. tremula Lee et al. (2009)

Glycosyl transferase PtrGT8D1/2 ↓ Populus trichocarpa Li et al. (2011a, b)

Endotransglycosylase PtxtXyn10A ↓ Populus tremula × P. tremuloides Derba-Maceluch
et al. (2015)

Glucuronxylan methyl
transferase

PtrDUF579-3 ↓ Populus × P. euramericana Song et al. (2016)

Pectin Pectin methyl transferases PttPME1 ↑↓ Populus tremula × P. tremuloides Siedlecka et al. (2008)

Pectate lyase PtxtPL1-27 ↑ Populus tremula × P. tremuloides Biswal et al. (2014)

Galacturonosyl transferase PdGAUT12 ↓ Populus deltoides Biswal et al. (2015)

Cellulose Cellulose synthase PtdCesA8 ↓ Populus tremuloides Joshi et al. (2011)

Endoglucanase PaxgKOR ↓ Populus alba × P. grandidentata Maloney and Mansfield
(2010)

Endoglucanase PgKOR ↓ Picea glauca Maloney et al. (2012)

Endoglucanase PtKOR1 ↓ Populus trichocarpa Yu et al. (2014)

Endoglucanase PtrCel9A6 ↓ Populus trichocarpa Yu et al. (2013)

Sucrose synthase PttSUS1, PttSUS2 ↓ Populus tremula × P. tremuloides Gerber et al. (2014)

Fructokinase FRK2 ↓ Populus tremula × P. tremuloides Roach et al. (2012)

UDPase Acetobacter xylinum derived UGPase ↑ Populus alba × P. grandidentata Coleman et al. (2007)

Sucrose synthase Gossypium hirsutum derived
SuSy ↑

Populus alba × P. grandidentata Coleman et al. (2009)

Sucrose-6-phosphate synthase
and sucrose-6-phosphatase

Arabidopsis thaliana-derived SPS-SPP
fusion construct ↑

Populus alba × P. grandidentata Maloney et al. (2015)

Up-arrow shows expression increase, down-arrow shows expression decrease that resulted
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altering availability of soluble carbohydrates in source
and sink tissues can serve as a useful method of modify-
ing cellulose production in trees.

Hemicellulose

Hemicelluloses are a heterogeneous group of branched poly-
saccharides that associate with both cellulose microfibrils and
lignin. In dicot angiosperms such as poplars and eucalypts,
hemicelluloses are composed predominantly of glucuronoxylan
(GX) chains. These are xylan chains that are partially substitut-
ed by glucuronic acid and 4-O-methyl-glucuronic acid (GlcA
and MeGlcA, respectively) groups (Timell 1967). In conifers,
the predominant hemicelluloses are glucomannan and
glucuronoarabinoxylan (Pettersen 1984). These polymers can
also be decorated with acetyl groups. Biosynthesis of GX poly-
mers involves several different classes of Golgi-targeted glyco-
syl transferases that produce the primary backbone, side chain,
and reducing end sequence (Rennie and Scheller 2014). During
the biochemical conversion of wood biomass, hemicellulose
content and composition are factors limiting saccharification,
because they limit the access of cellulases to cellulose (Himmel
et al. 2007). RNAi suppression of glucuronoxylan glycosyl
transferase genes in hybrid poplar (P. tremula ×P. alba) resulted
in marked decreases in glucuronoxylan content, as well as im-
proved hydrolysis by cellulases (Lee et al. 2009). RNAi sup-
pression of two other putative xylan glycosyl transferases in P.
trichocarpa also resulted in drastically reduced xylan content
(Li et al. 2011a, b). However, in both studies, the reduction in
cell wall xylan resulted in a corresponding decrease of second-
ary cell wall thickness, collapsed vessel elements, and a reduc-
tion in stem modulus of elasticity (Lee et al. 2009; Li et al.
2011a, b).

Similarly, augmentation of xylan-modifying enzymes in
poplar has been shown to impact cell wall digestibility or ease
of hydrolysis. RNAi suppression ofPtrDUF579-3, an enzyme
that mediates the methylation of the GlcA groups associated
with GX chains, resulted in a reduction in GlcA and methyl-
ated GlcA. Genetically engineered lines subjected to acid pre-
treatment and cellulase digestion released greater quantities of
xylose and glucose compared to wild-type trees (Song et al.
2016). MeGlcA side residues have been suggested to interact
with lignin through covalent ester linkages (Takahashi and
Koshijima 1988). Suppression of PtrDUF579-3 appears to
improve cellulase access to cellulose by altering the linkages
between the major cell wall polymers (Song et al. 2016).

Xylan-modifying enzymes also influence the overall sec-
ondary cell wall structure. Suppression of a xylan
endotransglycosylase, PtxtXyn10A, in hybrid poplar (P.
tremula × P. tremuloides) resulted in reduction in the microfi-
bril angle (Derba-Maceluch et al. 2015). The authors suggest
that PtxtXyn10Amay serve to release tensional stresses during

the deposition of secondary cell walls, and suppression results
in a build-up of stress leading to re-orientation of cortical
microtubules which direct the deposition of cellulose during
cell wall development (Derba-Maceluch et al. 2015).

Pectin

Pectins are a group of heterogeneous polysaccharides rich in
galacturonic acid. In wood cell walls, pectins are composed
mainly of homogalacturonan (HG) and rhamnogalacturonan I
(RGI), which form into a pectic-matrix surrounding the
cellulosic-glycan network (Willats et al. 2001). The final
structure of the pectin network is decided by a suite of trans-
glycosylases, esterases, hydrolases, and pectate lyases located
in the cell wall (Fry 2004).

Pectins are a major component of primary cell walls but are
largely absent in secondary cell walls (Jarvis 1984). Although
secondary cell walls form the bulk of woody biomass, there is
evidence that modification of pectin may alter saccharification
yields in trees. For example, overexpression of a pectate lyase
gene in hybrid poplar (P. tremula × P. tremuloides) increased
the solubility of cell wall pectins and xylans, and improved
yields during enzymatic saccharification (Biswal et al. 2014).
Additionally, RNAi suppression of a cottonwood (P.
deltoides) glycosyltransferase gene, orthologous to a
galacturonosyltransferase involved in biosynthesis of pectic
HG in A. thaliana, resulted in a reduction in both hemicellu-
lose and pectin, and produced trees with more easily extract-
able cell walls (Biswal et al. 2015).

Pectin methylesterases (PMEs) de-esterify HG chains, fa-
cilitating intramolecular linkages within the pectin network
(Pelloux et al. 2007). Overexpression of a PME in hybrid
poplar (P. tremula × P. tremuloides) was shown to decrease
the degree of esterification in HG chains, while RNAi sup-
pression of the same PME resulted a reduction in total HG
content, likely because of the increased susceptibility of high-
lymethyl-esterified HG to degradation (Siedlecka et al. 2008).

Lignin

Lignin, the second most abundant biopolymer, is often con-
sidered the glue that cements the other secondary cell wall
components together. In doing so, it provides structural stabil-
ity to the secondary cell wall while also aiding in water con-
duction and plant defense. At a superficial level, lignin is
comprised of varying ratios of p-hydroxyphenyl (H), guaiacyl
(G), and syringyl (S) moieties polymerized within the cell wall
(Ralph et al. 2004). In angiosperm trees, half or more of lignin
may be derived from S units, while in conifers only H and G
moieties are found. Closer inspection reveals that there is vast
diversity within the polymer composition (Morreel et al.
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2004; Ralph et al. 2004; Mottiar et al. 2016). For example, 5-
hydroxyconiferyl alcohol, hydroxycinnamaldehydes, and
hydroxycinnamic acids, which are products of incomplete
monolignol biosynthesis, have all been clearly found within
the lignin polymer (Vanholme et al. 2008). Additionally, atyp-
ical monolignol conjugates like sinapyl p-hydroxybenzoate
and coniferyl p-coumarate, among others, have been found
incorporated in the polymer, yielding great physicochemical
diversity (Morreel et al. 2004; Ralph et al. 2004; Del Rio et al.
2007).

Delignification typically relies on the addition of acid or
alkali at high temperatures to remove lignin for fiber separa-
tion in pulp and paper production and to facilitate the sacchar-
ification of lignocellulosic material for biofuel production
(Mansfield 2009). As the lignin biosynthetic pathway has
been largely mapped and provides biosynthetic mechanisms
explaining some of the diversity found within the polymer
(Humphreys and Chapple 2002), researchers have focused
on manipulating various steps in the pathway to engineer lig-
nin and its constitutive monomers to improve digestibility.
Myriad potential solutions to the lignin challenge have been
proposed, but most notable efforts have focused on reducing
the lignin content in plants by downregulating critical lignin
biosynthetic genes. These studies are summarized in Table 2,
where the genes are ordered to reflect the progress of the steps
in monolignol biosynthesis. For example, cinnamate 4-
hydroxylase (C4H) catalyzes the first oxidation of the aromat-
ic ring, and acts in the formation of all three lignin subunit
types. Downregulation of this gene in hybrid poplar (P.
tremula × P. tremuloides) resulted in a 30% reduction in lignin
content (Bjurhager et al. 2010). Marked reduction in lignin
content has also been achieved with the downregulation of
4-coumarate:coenzyme A ligase (4CL). Some GE lines
showed as much as 45% reduction in total lignin and a signif-
icant increase in the presence of p-hydroxycinnamic acids,

such as p-coumaric, caffeic, sinapic, and ferulic acid (Hu et
al. 1999; Li et al. 2003; Jia et al. 2004; Schmidt et al. 2009;
Wagner et al. 2009; Voelker et al. 2011a; Tian et al. 2013;
Sutela et al. 2014).

Downregulation of a putative hydroxycinnamoyltransferase
(HCT), a major artery enzyme that directs substrate toward S
and G monolignol biosynthesis, was shown to be an effective
target for reducing lignin content in tissue-cultured tracheary
elements of Pinus radiata, where a 42% reduction in lignin
content was observed (Wagner et al. 2007). Next downstream
in the pathway, p-coumaroyl-CoA 3′-hydroxylase (C3’H) has
been downregulated in hybrid poplar (Populus grandidentata ×
P. alba) and Eucalyptus (E. urophylla × E. grandis), with the
result of significant reductions of lignin content, from a con-
ventional 22 and 29.6% to as low as 10 and 21.7% total cell
wall content, respectively (Coleman et al. 2008a; Sykes et al.
2015). Further analysis of the poplar GE lines revealed alter-
ation in the H:S:G ratios within the polymer, with the most
significant change being an increase in the H:G ratio
(Coleman et al. 2008a; Ralph et al. 2012). Suppression of
C3’H in hybrid poplar also resulted in irregular and small vessel
elements (Fig. 1).

Downregulation of cinnamoyl-CoA reductase (CCR), the
penultimate step in monolignol biosynthesis, resulted in a
50% reduction in lignin content in P. trichocarpa, 46% reduc-
tion in P. radiata, and an 8% reduction in P. abies (Leplé et al.
2007; Wadenbäck et al. 2008; Wagner et al. 2013).
Interestingly, downregulation of CCR also resulted in the lig-
nin being significantly altered in S:G ratio and a dramatic shift
in the metabolite profile, with increased levels of p-coumaryl,
caffeic acid, and ferulic acid hexoses (Wagner et al. 2013).

Although these GE lines do, on average, have reduced lignin
and presumably an increased ease of utilization, dramatic
changes in lignin content can lead to significant alterations in
the morphology and agronomic potential of plants (Coleman et

Fig. 1 Microtome cross-sections of transgenic RNAi-mediated sup-
pressed C3’H (a) and wild-type (b) hybrid poplar (P. alba x
grandidentata) histochemically stained with Mäule’s reagent. The
brighter red intensity apparent in panel A is indicative of an enrichment
in syringyl monomers in the lignin polymer. Also note the irregular and

small vessel element in the transgenic xylem (a) compared to the wild-
type xylem (b) that manifests from the overall reduction in total secondary
cell wall lignin content due to C3’H suppression and overall perturbation
of the lignin biosynthetic pathway.
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al. 2009; Min et al. 2012; Sykes et al. 2015). Trees with re-
duced lignin content tend to lack structural integrity, and have
stunted growth, reduced water conductivity and vascular stabil-
ity, and an increased vulnerability to pathogens and pests
(Coleman et al. 2008b; Voelker et al. 2011a, b; Bonawitz and
Chapple 2013). As a result, recent efforts have focusedmore on
altering the physiochemical properties of lignin without signif-
icantly altering its content or functionality.

One such target has been altering the ratio of lignin mono-
mers. The H:G:S ratio varies considerably from species to
species, and greatly affects the processability of xylem fibers
and vessel elements. For example, S-rich lignins, which are
found in angiosperm species, contain more β–O–4 bonds
compared to G-rich lignins, which are seen in gymnosperm
species and contain more β–5, 5–5, and β–β carbon–carbon
bonds. The higher instance of β-ethers common to S-rich
lignin make it more susceptible to alkali-mediated degrada-
tion, and thus increasing the S:G ratio has been a major sci-
entific pursuit within the last few decades (Mansfield et al.
2012).

The expression levels of ferulate/coniferaldehyde-5-hydrox-
ylase (F5H or Cald5H), caffeic acid O-methyltransferase
(COMT), caffeoyl-coenzyme A O-methyltransferase
(CCoAOMT), and MIR156 family microRNA (miRCg1) have
all been shown to impact the S:G ratio. For example, the S:G
ratios in hybrid poplar (P. tremula × P. alba) and P. tremuloides
were increased with the overexpression of F5H, resulting in an
increase of S units within the polymer to as high as 97.5%,
compared to the innate 68% (Franke et al. 2000; Huntley et
al. 2003; Li et al. 2003; Stewart et al. 2009). Li et al. (2003)
also combined upregulating F5H with downregulating 4CL in
P. tremuloides and found that the combination simultaneously
increased the S:G ratio, reduced lignin content, altered the phe-
nolic composition, and improved the enzyme-mediated sac-
charification yields (Suzuki et al. 2010; Xiang et al. 2015).
Although increasing the abundance of S units in hybrid poplar
has met with great success, the alteration of the S:G ratio in S-
deficient conifer species has not been reported for intact trees.
However, a successful proof of principle was achieved with
simultaneous expression of Liquidambar styraciflua F5H and
COMT in P. radiata tracheary element cell cultures (Wagner et
al. 2015).

Downregulation of COMT in poplars (P. trichocarpa × P.
deltoides and P. tremula × P. alba) resulted in a significant
decrease in S units, an increased number ofβ–O–4 bonds in G
and S end units, and integration of 5-hydroxyconiferyl alcohol
within the polymer (VanDoorsselaere et al. 1995;Marita et al.
2001; Lu et al. 2010). Downregulation of CCoAOMT, while
resulting in a decrease in the overall lignin content, also led to
a significant increase in the S:G ratio of poplar (P. tremula × P.
alba) and an increase in the H:G ratio in P. radiata
(Meyermans et al. 2000; Wagner et al. 2011). In addition to
reducing lignin content and increasing the H:G ratio in P.

radiata, downregulation of CCoAOMT resulted in the novel
integration of caffeoyl alcohol into the lignin polymer
(Wagner et al. 2011).

Al though there a re many ways in which the
phenylpropanoid pathway can be modified to reduce lignin
content, some researchers have looked outside of the common
lignin biosynthetic genes for a solution. For example, Lin et
al. (2016) identified and downregulated a class III peroxidase
in P. trichocarpa (PtrPO21) which resulted in an average
lignin reduction of 20%. This decline in lignin was attributed
to a decrease in reducing enzymes, therefore decreasing the
degree of radicalization of monolignols, and thus polymeriza-
tion. A similar result was observed with the upregulation of
Ptr-miR397a, a microRNA that targets laccases (Lu et al.
2013). Moreover, expression of the maize miRCg1 in hybrid
poplar (P. tremula × P. alba) resulted in a 30% reduction in
lignin and a significantly lower S:G ratio (Rubinelli et al.
2013).

These significant studies have revealed the inherent plas-
ticity of lignification, in terms of both the biosynthetic path-
way and the structure of the lignin polymer itself (Vanholme et
al. 2008; Stewart et al. 2009; Eudes et al. 2012; Mottiar et al.
2016). Based on this malleability, there are ongoing efforts to
develop novel lignin with altered content and composition to
improve digestibility or utility (Weng et al. 2008; Vanholme et
al. 2012). One tack has been to identify genes that can con-
tribute to the synthesis of favorable monolignol conjugates,
which, when integrated into the lignin backbone, increase the
number of alkali-cleavable bonds and improve delignification
rates (Wilkerson et al. 2014). These more easily hydrolyzable
lignins are also referred to as Bzip-lignins.^ One method to
increase the number of alkali-cleavable bonds is through the
introduction of esters into the lignin polymer. Acylated
monolignols are produced naturally in many plants by
acyltransferases acting prior to the oxidation and radical cou-
pling of lignin monomers (Del Rio et al. 2007). To-date, only
four such enzymes, dubbed monolignol transferases, have
been identified. Two p-coumaroyl-CoA:monolignol transfer-
ases (PMTs) in Oryza sativa and Brachypodium distachyon
catalyze the conjugation of p-coumaroyl moieties to
monolignols, and two feruloyl-CoA:monolignol transferases
(FMTs) in Angelica sinensis and O. sativa conjugate feruloyl
moieties to coniferyl and sinapyl alcohol (Withers et al. 2012;
Petrik et al. 2014; Wilkerson et al. 2014; Karlen et al. 2016).
Expression of an A. sinensis FMT in hybrid poplar (P. alba ×
P. grandidentata) achieved the integration of ferulate–
monolignol conjugates into the lignin (Wilkerson et al.
2014), and the novel ester bonds within feruloylated lignin
units resulted in increased efficiency of delignification. This
approach was also shown to be successful with the expression
of PMT from O. sativa in hybrid poplar, resulting in p-
coumarate conjugates incorporated into lignin (Smith et al.
2015). Introducing or increasing the abundance of these
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hydroxycinnamates (p-coumarate, ferulate, and sinapate) is
one area of particular interest in the pursuit of zip-lignin
(Ralph 2010).

An alternative approach to zip-lignins is to increase the
occurrence of peptide cross-linkages within the lignin poly-
mer to increase the sites for protease action. This was achieved
with the overexpression of a transgene encoding a high
tyrosine-content peptide in hybrid poplar (P. deltoides × P.
nigra), which resulted in lignin that showed increased suscep-
tibility to enzyme-mediated digestion and had increased poly-
saccharide yields post-treatment (Liang et al. 2008).

In addition, lignin has been altered by reduced carbohy-
drate coupling. Reducing the linkages between lignin and car-
bohydrate secondary cell wall components limits the need for
intensive pre-saccharification treatment by increasing carbo-
hydrate accessibility for enzyme-mediated saccharification.
Min et al. (2013) observed that with F5H upregulation and
4CL downregulation in hybrid poplar (P. nigra × P.
maximowiczii), there was an increase in the lignin carbohy-
drate cross links within the secondary cell wall, which resulted
in less accessible cellulose for saccharification (Min et al.
2014a, b). Moreover, Coleman et al. (2012) observed an in-
crease in the S:G ratio in the lignin of hybrid poplar (P.
tremula × P. alba) in which a pine cytosolic glutamine syn-
thetase was expressed (Gallardo et al. 1999). Notably, these
GE events also had significantly elevated levels of secondary
cell wall carbohydrates including glucose, galactose, xylose,
and mannose.

The many examples provided demonstrate that lignin with
altered content and composition can readily be achieved
through modifying expression of genes in the phenylpropanoid
pathway. However, obtaining a commercially useful result will
probably require modification of multiple steps in the network
of biosynthetic reactions, and there is a limitation in the number
of traits that feasibly can be manipulated through multigene
alteration. The genetic manipulation of the transcriptional reg-
ulators controlling suites of genes involved in secondary cell
wall development may provide a means for altering more com-
plex wood phenotypes. For example, manipulation of the tran-
scriptional regulator ARBORKNOX2 (ARK2), a homeobox
gene in hybrid poplar (P. tremula × P. tremuloides) resulted in
changes to lignin and cellulose content that were consistent
with simultaneous transcriptional changes in key genes in-
volved in both lignin and cellulose biosynthesis (Du et al.
2009). This approach was also shown to be effective with the
overexpression of MYB transcription factors in P. glauca
(white spruce), and NAC domain transcription factors in
Eucalyptus (Bomal et al. 2008; Hussey et al. 2011).
Meanwhile, single nucleotide polymorphisms were examined
in P. trichocarpa to identify genes associated with physical and
chemical characteristics of the secondary cell wall (Porth et al.
2013). In another approach, hierarchical gene regulatory net-
work models were developed to identify regulatory genes

based on RNA-seq analysis of poplar xylem protoplasts over-
expressing NAC domain transcription factors (Lin et al. 2013).
The progress in understanding the regulation of cell wall com-
ponents will help to design the wood properties to suit for
efficient and sustainable utilization while maintaining growth
and stress resistance characteristics.

Biotic stress resistance

Biotic stress can significantly impact tree health and survival,
reducing forest productivity. However, the means to counter
major disease or pest threats is very limited for most tree
species. The US Forest Service publishes a summary of the
most important insect and disease conditions threatening for-
ests (Karel and Man 2017). Each of these causes significant
damage each year. For example, the mountain pine beetle
(Dendroctonus ponderosae) epidemic killed about 4 million
hectares of pine forest in the western states of the USA in
2009, while the current epidemic in Western Canada has been
estimated to have affected more than 18 million hectares of
pine forest and continues to spread eastward (Cooke and
Carroll 2017). According to a US Forest Service report, bark
beetle species have damaged more than 16 million hectares of
conifer trees stands in the western USA from 1997 to 2011
(Unired States Forest Service 2011). Other pests such as gypsy
moth (Lymantria dispar), southern pine beetle (Dendroctonus
frontalis), emerald ash borer (Agrilus planipennis), sudden
oak death (Phytophthora ramorum), and fusiform rust
(Cronartium quercuum f. sp. fusiform.) are killing or damag-
ing millions of hectares of conifers and angiosperm trees each
year. Evidence shows that the outbreaks are associated with
the changes in environmental conditions (Anacker et al.
2008). Breeding for resistance is limited by the long flowering
age for many tree species, especially for the economically
important conifers (Johnson 1939; Castellanos-Hernández et
al. 2011). Even though genetic control of fusiform resistance
has been identified in loblolly pine (Wilcox et al. 1996;
Amerson et al. 2015), the application of molecular tools has
been very limited due to a lack of precision and cost. The main
practice to reduce the impact of rust has been screening for
resistance at seedling stage and the use of resistant genetic
materials in loblolly and slash pine seed orchards (Schmidt
2003; Cowling and Young 2013).

In comparison to forest trees, GE applications in horticul-
tural trees are more advanced, though its commercial uptake
has been limited as well (Table 3). The earliest success was in
response to papaya ring spot virus, which nearly devastated
Hawaii’s papaya industry. Researchers at Cornell University,
in conjunction with Hawaiian papaya growers, developed a
transgenic, resistant papaya using parasite-derived resistance
(PDR) in the early 1990s (Ferreira et al. 2002), and gained
federal approval for commercial orchards in Hawaii in 1998
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(Suzuki et al. 2007). A genetically engineered plum (Prunus
domestica L.) was developed soon after, using post-
transcriptional gene silencing to confer resistance to plum
pox virus (Scorza et al. 2013). To date, this BC5^ plum has
been cleared by federal regulators for cultivation only in the
USA (Scorza et al. 2016), but is not currently used in com-
mercial production.

A more recent disease threatening the entire citrus industry
is huánglóngbìng (HLB), or citrus greening, which can affect
all citrus cultivars, stunting trees and rendering the fruit un-
marketable. Transgenic citrus trees have been developed in an
attempt to provide disease resistance to the bacteria that causes
HLB (Dutt et al. 2008, 2015; Hajeri et al. 2014) or to the
insect vector (Hajeri et al. 2014). The trees developed by Dr.
Eric Mirkov’s team at Texas A&M University are overex-
pressing a defense gene originated from spinach, which en-
codes a protein identified as being toxic to a variety of bacteria
and fungi, including the canker causing Candidatus
liberibacter asiaticus (Voosen 2014). The trees have gone
through multi-year trials and have shown good resistance phe-
notypes. The Southern Gardens Citrus Corporation has taken
steps to deregulate the transgenic HLB-resistant citrus.

Citrus canker is another bacterial disease affecting the cit-
rus industry. An exciting development has been reported re-
cently using CRISPR/Cas9 technology to edit the susceptibil-
ity gene CsLOB1, a member of the Lateral Organ Boundaries
Domain (LBD) gene family of plant transcription factors (Jia
et al. 2017). By knocking out both alleles of CsLOB1 in the
highly susceptible grapefruit cultivar Duncan (Citrus
paradisi), two transgenic lines were produced which showed
enhanced resistance. These trees did not develop any canker
symptoms upon inoculation with Xanthomonas citri ssp. citri
(Xcc). The engineered varieties do not have any introduced
foreign genes, which could potentially reduce some of the
regulatory burden in the USA.

A novel approach to fungal and oomycete resistance was
developed in T. cacao using phosphatidylinositol-3-phosphate
(PI3P) binding proteins (Helliwell et al. 2016). These proteins
bind to pathogen effectors and block their entry into plant
cells. Resistance conferred with PI3P-binding proteins may
be more stable than that based on host resistance (R) proteins,
as PI3P-binding proteins target a greater diversity of pathogen
effectors (Helliwell et al. 2016). Transgenic T. cacao trees
secreting PI3P-binding proteins showed enhanced resistance
to Phytophthora tropicalis, P. palmivora, and the fungal path-
ogen Colletotrichum theobromicola.

For forest trees, China was the first country where trans-
genic trees were released for commercial use. Insect-resistant
poplar trees containing a modified Cry1Ac toxin gene from Bt
were approved and released for planting in 2002 (Food and
Agricutural Organization 2010). By 2015, approximately
543 ha of Bt poplar were planted in China (James 2015).
The released events were crossed with P. deltoides, and theT
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2-yr-old hybrids showed excellent efficacy against L. dispar
larvae feeding on leaves (Hu et al. 2014). To date, no signif-
icant negative environmental impacts caused by the transgenic
poplars have been reported (Hu et al. 2014).

Cry genes have also been used for transformation of hybrid
poplar (Klocko et al. 2013),Eucalyptus (Harcourt et al. 2000),
Monterey pine (Grace et al. 2005), and walnut (Dandekar et
al. 1998). In field studies of poplar transformed with a
Coleopteran-active Cry3a Bt-toxin gene, there was approxi-
mately 14% growth advantage, even in years of slight damage
by the cottonwood leaf beetle (Klocko et al. 2013). Cry genes
tagged with a DNA fragment that encodes a cellulase-binding
peptide showed increased lethality to Asian longhorn beetle
larvae, attributable to increased toxin retention in the midgut
as a result of the protein binding to Cx-cellulase produced by
the larvae (Guo et al. 2012). Transgenic American elm (Ulmus
americana) has been developed with a synthetic antimicrobial
peptide, conferring some resistance to Dutch elm disease
(Newhouse et al. 2007). Black cherry (Prunus serotina) has
been transformed with genes coding for prunasin hydrolase
and mandelonitrile lyase to enhance hydrogen cyanide (HCN)
production to increase resistance to cambial-mining insects
(Wang and Pijut 2014b). Black cherry naturally produces
HCN, and the researchers used endogenous genes with alter-
native promoters for enhanced enzymatic production. The ef-
ficacy of this method is still under investigation.

Research using GE and transcriptomics has allowed for
greater understanding of existing plant defenses to biotic
stress. Economically important spruce species have been the
subject of several such investigations. The transcriptomes of
white spruce (P. glauca) cells were described at baseline
levels and under methyl jasmonate-induced conditions, dif-
ferentiated by cell type (cortical resin duct cells, phenolic
cells, and phloem) through the use of laser microdissection
(Celedon et al. 2017). Another study shed light on genes
involved in the biosynthesis of stone cells in Sitka spruce
(Picea sitchensis), which serve as a physical defense against
stem-boring insects (bark beetles and weevils) in conifers
(Whitehill et al. 2016). Bark beetles can be vectors of fungal
pathogens, and an increase in specific proanthocyanidins in
spruce bark after fungal infection was shown to be important
to pathogenesis. Genes involved in this response were inves-
tigated in a bacterial system and by overexpression in trans-
genic Norway spruce (P. abies) (Hammerbacher et al. 2014).
Such basic research is critical for identifying candidate genes
for the next generation of biotech trees.

Chestnut blight resistance

In eastern North America, American chestnut (Castanea
dentata) was one of the most prevalent trees in the decid-
uous forests prior to the twentieth century, valued for its

nut crop and rot-resistant wood. Chestnut blight, a canker
disease caused by the fungal pathogen Cryphonectria
parasitica, spread through the species’ range in the de-
cades following its introduction from Asia around 1904,
destroying billions of chestnut trees (Anagnostakis 1987).
Conventional breeding programs have been conducted to
introduce the resistant genes from Chinese chestnut
(Castanea mollissima) since the 1920s. One such program
by The American Chestnut Foundation (TACF) is still
active (Anagnostakis 2012; Steiner et al. 2016). The
TACF breeding program has begun to implement genomic
selection to improve the speed and efficiency of candidate
selection (Steiner et al. 2016). Blight resistance in
American chestnut was also attempted by mutagenesis,
or Bmutational breeding^ with no success (Dietz 1978;
Burnworth 2002; Liang 2011). The best results from GE
approaches have been from the State University of New
York’s College of Environmental Science and Forestry
and collaborating institutions. They developed a transfor-
mation system (Merkle et al. 1991; Carraway et al. 1994;
Polin et al. 2006), and have tested many candidate genes
for enhancing chestnut blight resistance or tolerance.
American chestnut has proved to be a difficult species;
these techniques have taken decades to develop.

The most promising blight tolerance gene was chosen
based on observations of variation in fungal virulence
between strains. Virulent strains of C. parasitica produce
far greater quantities of oxalate than hypovirulent strains
(Havir and Anagnostakis 1983). The detoxification of ox-
alate might thus provide resistance to chestnut blight.
Oxalate oxidase (OxO), which catalyzes the degradation
of oxalate into H2O2 and CO2, is produced in a wide
variety of plants including wheat (Triticum aestivum)
and other cereal grains (Lane 1994). An early test showed
that transgenic hybrid poplar expressing the OxO trans-
gene showed increased tolerance to oxalic acid and resis-
tance to the fungal pathogen Septoria musiva (Liang et al.
2001). When transgenic American chestnut trees were lat-
er developed with the OxO gene driven by the CaMV 35S
promoter, they demonstrated resistance to chestnut blight
better than American chestnut controls; in some cases,
better even than blight resistant Chinese chestnut controls
(Zhang et al. 2013; Newhouse et al. 2014; Fig. 2). A
petition to the USDA for deregulation of the best
performing event is in preparation; researchers are also
working with the EPA and FDA toward the use of these
trees for horticultural and restoration plantings. American
chestnut transformed with the OxO gene might have an
advantage in durability of the resistance, as OxO is not
lethal to the blight fungus. Instead, OxO mitigates the
fungus’ ability to kill living plant tissue, while still
allowing the fungus to live as a saprophyte. Chestnut
blight also lives as a saprophyte on other species such
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as oak (Quercus spp.), maple (Acer rubrum), hickory
(Carya ovata), and sumac (Rhus typhina) (Stipes et al.
1978; Baird 1991; Davis et al. 1997; Frigimelica and
Faccoli 1999), which serve as refugia. This will likely
increase sustainability of the tolerance mechanism by re-
ducing selection of any fungal mutations that would over-
come the effects of the OxO.

Abiotic stress resistance

In addition to the biotic challenges, tree growth and health are
profoundly influenced by environmental factors such as water
availability, nutrients, and temperature. There are multiple
ways for GE to help trees copewith abiotic stresses to preserve
biomass growth. Globally, climate change brings more

Fig. 2 Transgenic American chestnut expressing the oxalate oxidase
(OxO) gene. (a) Transgenic American chestnut trees in the New York
Botanical Garden, near to where the blight was first discovered in 1904.
(b) Bumblebee on an American chestnut catkin (male flower). Studies
were done on the ecological effects of OxO-producing chestnut on spe-
cies including bumblebees. (c) Leaf disk assay (green living tissue, brown

dead tissue) demonstrating oxalic acid tolerance lowest in (1) American
chestnut, higher in (2) Chinese chestnut, and highest in (3) transgenic
American chestnut. (d), (e) Siblings from transgenic American chestnut
and infected with blight, (d) did not inherit the OxO gene and is suscep-
tible, (e) inherited the OxO gene and is resistant.
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unpredictable and severe weather patterns that are not only
having a negative impact on biomass accumulation but also
pose a threat to the survival of trees. In many arid areas, lim-
ited water availability and salinization of soils retards tree
growth or increases tree mortality. For these reasons, improv-
ing drought or salt tolerance has been an important part of
research programs. For example, traditionally in northern
China, poplar varieties have been planted in large areas as
windbreaks, environmental protection belts, or to harvest
wood for various purposes. Stunted growth and a high mor-
tality rate in areas with frequent drought or salt stress are key
limiting factors affecting productivity. A salt-tolerant poplar
(Populus × xiaozhannica cv. BBalizuangyang^) containing a
mannitol dehydrogenase gene (mtlD) from Escherichia coli
has been developed and permitted for large plantings in
China (Liu et al. 2000; Sun et al. 2002).

There have also been other promising results from GE of
abiotic stress responses. Genetically engineered hybrid poplar
trees expressing genes to increase the accumulation of
osmolytes or molecular chaperones to protect the cellular com-
ponents under drought conditions exhibited improved growth
under stress (Takabe et al. 2008; Li et al. 2011a, b). The green-
house survival of Pinus virginiana transgenic plants expressing
an ERF/AP2 transcription factor from pepper was much higher
than controls when exposed to 48°C (Tang et al. 2005). Abiotic
stresses can lead to accumulation of reactive oxygen species
(ROS) damaging cells. Resistance to such oxidative stresses
was successfully demonstrated in greenhouse-grown Populus
alba × Poplus glandulosa by inducible expression of
AtNDPK2 (A. thaliana nucleoside diphosphate kinase driven
by a sweet potato anionic peroxidase promoter) or Populus
sieboldii × Populus grandidentata by constitutively expressing
a horseradish peroxidase (CaMV35S::prxC1a) (Kawaoka et al.
2003; Kim et al. 2011). There have been a number of other
promising developments in abiotic stress tolerance in plants
that await evaluation in trees (e.g., Dai et al. 2007; Yang et
al. 2012; Baldoni et al. 2015; Butt et al. 2017; Zhang et al.
2017).

A good example of engineering abiotic stress resistance is
the development of freeze tolerant Eucalyptus (Hinchee et al.
2011). The target tree was an elite clone of E. grandis × E.
urophylla, which exhibited fast growth, superior fiber charac-
teristics, and high pulp yield, but was sensitive to winter
freezes in the Southeastern USA. The concept was to provide
a source of competitive and high-quality fiber in the USA by
extending the growing range from southern Florida to north-
ern Florida and the coastal region of the southern USA. The
elite clone was transformed with a cassette that contained the
A. thaliana cold-inducible promoter rd29A (Yamaguchi-
Shinozaki and Shinozaki 1993) driving CBF2, a member of
the CBF/DREB (C-repeat dehydration-responsive element
binding) transcription factor family and a regulator of the
cold-response pathway in A. thaliana (Jaglo-Ottosen et al.

1998; Liu et al. 1998). The cassette also included a pollen
control gene to mitigate potential gene flow concerns
(Hinchee et al. 2009, 2011; Zhang et al. 2012a). Single inser-
tion events were tested in 21 replicated field trials across eight
different locations representing USDA Hardiness Zones 8a
(potential kill zone), 8b (target zone), and 9a (freeze stress-
free zone) (Hinchee et al. 2011). The top events showed com-
parable growth to non-transgenic controls in areas with mild
or no freezing during the winter months. In the target zone,
with the temperature as low as − 8.4°C during the fifth winter
season, the best-performing line suffered only a 10% dieback
as compared to 99% dieback for the controls. The top two best
performing events were submitted in petition 11-019-01p
(United States Department of Agriculture Animal and Plant
Health Inspection Service 2013 and links therein) for deregu-
lation. However, the decision on the petition is still pending
(United States Department of Agriculture Animal and Plant
Health Inspection Service 2017), and the company does not
appear to have released information to the public on whether
the cold tolerance has remained effective over time, including
during the unusually cold temperatures observed in the
Southern USA in recent years.

Recently, progress has been made in understanding cold
stress signaling and regulation pathways in model plants.
For instance, a report showed that a transcription factor gene,
BZR1, a key component of the brassinosteroid signaling path-
way, acts upstream of theCBF pathway, and can potentially be
a target for regulating cold tolerance (Li et al. 2017). Other
transcription factors such as ICE1 (a basic-helix-loop-helix
type transcription factor) or CAMTAs (calmodulin-binding
transcription activators) were shown to upregulate CBFs
(Chinnusamy et al. 2003; Doherty et al. 2009). More recently,
protein kinase OST1 (OPEN STOMATA1), also known as
SnRK2.6, was found to phosphorylate ICE1 enhancing its
activation of CBF3 expression under cold stress (Ding et al.
2015). Overexpression of ICE1 and OST1 enhanced freezing
tolerance in A. thaliana (Ding et al. 2015); overexpression of
ICE1 alone improved rice survival and led to accumulation of
proline under cold stress (Xiang et al. 2008). However, these
genes have yet to be tested in forest trees.

Reproduction control

Accelerated flowering Tree domestication and breeding has
been hindered by the prolonged juvenile period of tree spe-
cies. Gymnosperms, such as Picea and Pinus, can take more
than 15 yr from seed or juvenile propagules to flower
(Häggman et al. 2016). Even for fast-growing angiosperm
species, such as poplars and Eucalyptus, it generally takes
more than 3 yr to flower and sometimes much longer.
Estimates vary widely, however, depending on genotype,
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environment, and the application of floral stimulating treat-
ments (Klocko et al. 2016a; McGarry et al. 2017).

With the goal of shortened breeding cycles, early onset of
sexual reproduction has been a focus of reproductive modifi-
cation studies in trees. Traditionally, early flowering can be
induced by grafting flowering twigs onto rootstocks, applying
chemical (e.g., fertilizer and hormone), environmental treat-
ments such as vernalization and photoperiod manipulation,
and physical treatments such as stem girdling and root pruning
(Flachowsky et al. 2009; McGarry et al. 2017). These tradi-
tional methods, however, are costly, take time to be optimized,
and are often too slow or ineffective (McGarry et al. 2017).

Recent discoveries of the genes that control flowering have
transformed the landscape for control of floral initiation and
structure (reviewed by Krizek and Fletcher 2005; Chandler
2012; Ó’Maoiléidigh et al. 2014), and enabled GE-based flo-
ral induction. The first success in a tree was reported in poplar,
where the floral meristem identity gene LEAFY (LFY) from A.
thaliana was overexpressed under the control of the 35S pro-
moter (Weigel and Nilsson 1995). Later studies with LFY and
its orthologs, however, often found low precocious flowering
rate and abnormal floral morphology (Rottmann et al. 2000;
Flachowsky et al. 2009). More effective floral initiation has
been achieved with the FLOWERING LOCUS T (FT) gene
and the TERMINAL FLOWER1 (TFL1) gene—two homolo-
gous genes that act distinctly in the floral initiation pathway.
The FT gene encodes the long-distance florigenic signal in A.
thaliana, promotes the transition from vegetative to reproduc-
tive growth, and has been found to be functionally conserved
across diverse plant species (Böhlenius et al. 2006; Lifschitz
et al. 2006; Corbesier et al. 2007; Lin et al. 2007; Klintenäs et
al. 2012). Constitutive overexpression of the FT gene and its
orthologs has successfully induced early flowering in poplar
(Zhang et al. 2010), Eucalyptus (Klocko et al. 2016a), and
several fruit trees such as apple (Malus × domestica Borkh.;
Yamagishi et al. 2014), citrus (Citrus excelsa; Velázquez et al.
2016), plum (Srinivasan et al. 2012), and olive (Olea
europaea L.; Haberman et al. 2017), usually without strong
alterations in floral morphology or fertility. However, poplar
requires special conditions for FT to induce viable pollen or
seed (Zhang et al. 2010; Hoenicka et al. 2016). Alternatively,
precocious flowering can be conferred by suppression of the
reproductive transition inhibitor gene TFL1, as reported in
poplar, apple, and pear (Pyrus communis L.; Mohamed et al.
2010; Flachowsky et al. 2012; Freiman et al. 2012; Yamagishi
et al. 2014, 2016). Several other floral genes, such as
BpMADS4 (a flowering-associated MADS box gene from sil-
ver bi rch; Betula pendula Roth.) , FLOWERING
PROMOTING FACTOR1 (FPF1) and FRUITFUL (FUL)
from A. thaliana have also been found to be effective in pro-
moting precocious flowering in some plant species (Kania et
al. 1997; Teper-Bamnolker and Samach 2005; Flachowsky et
al. 2007; Weigl et al. 2015; Häggman et al. 2016).

Suppressed reproduction

Because many commercially important species, such as
poplars and Eucalyptus, are primarily vegetatively propa-
gated, delayed flowering and sexual sterility can be ben-
eficial in tree breeding. Male-sterility can help in produc-
ing hybrids, and reduction or complete loss of fertility is
likely to promote allocation of photosynthetic resources to
vegetative growth (Strauss et al. 1995) and therefore may
improve wood yield. Delayed flowering can be achieved
by mutation or suppression of genes that promote floral
initiation with RNAi or gene editing technology.
Flowering can also be postponed or prevented by overex-
pression of flowering suppressors or modified activators
(reviewed in Brunner et al. 2007 and Vining et al. 2015;
Fig. 3). Additionally, the juvenile-to-adult transition in
trees has been shown to be controlled by miRNA. A
prolonged juvenile phase has been observed in Populus
overexpressing miR156—a master regulator of vegetative
phase change (Wang et al. 2011). Sexual sterility has also
been sought as a major means to alleviate concerns over
release of exotic and invasive species, as well as from
transgene dispersal from GE trees. In addition to conven-
tional polyploidization to produce highly sterile triploids
and aneuploids (Lu et al. 2014; Shi et al. 2015, 2016;
Tokumoto et al. 2016; Yang et al. 2016; Guo et al.
2017), GE-based genetic ablation (i.e., elimination of flo-
ral organs) has been achieved by using a floral-specific
promoter to drive the expression of a cytotoxic gene. For
example, the PrMC2 promoter, a male-cone-specific pro-
moter cloned from pine, and the TA29 promoter, a
tapetum-specific promoter cloned from tobacco, have
been used to drive the expression of a barnase gene to
produce stable, multi-year sterility in field-grown Pinus,
Eucalyptus, and Populus trees (Zhang et al. 2012a;
Elorriaga et al. 2014). Li et al. (2016b) created a chimeric
promoter by fusing a reversed intron fragment of PtAG2,
an AGAMOUS orthologue from Populus trichocarpa,
with a short version of the 35S promoter. This chimeric
promoter showed floral-specific activity in tobacco and
was used to drive the expression of the Diphtheria toxin
A (DT-A) in tobacco and poplar to produce flowerless
plants (to date sterility has been demonstrated only in
tobacco).

Disturbed expression of floral genes can also impart
bisexual sterility. For example, RNA interference
(RNAi) has been used to suppress the expression of the
floral meristem identity gene LFY in poplar (Klocko et al.
2016b) and the floral homeotic C-class gene, AGAMOUS
(AG) in apple (Klocko et al. 2016c). Although reduced
fertility or complete sterility was observed in both cases,
the efficiency was low and variable. Direct editing of
floral genes using gene editing technology, which often
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leads to loss-of-function of the target gene, appears to be
more stable for tree species with long life spans. In pop-
lar, CRISPR-Cas nucleases have been used to target LFY
and AG orthologs with an average mutation rate as high as
80% (Elorriaga et al. 2016, 2018). This is much more
efficient than zinc-finger nucleases, which gave mutation

rates of lower than 0.3% (Lu et al. 2016). Gene editing
approaches could also be employed for repair of mutated
sites, enabling continued breeding of elite, sterile lines
where desired. With genome-wide transcriptomes acceler-
ating the discovery of genes active during flowering in
tree species (e.g., Vining et al. 2015), many more

Fig. 3 RNAi suppression of floral genes causes sterility in Populus sp.
(a), (b) RNAi sterility trial in Corvallis, OR. (c) Wild-type control catkin
in field. (d) RNAi-LFY/AG catkin, indicated by arrow, in field. (e) RNAi-

AG catkin in field. (f) Wild-type control catkin under microscope. (g)
RNAi-AG catkin under microscope.
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potential targets for gene editing will undoubtedly be
identified in the future.

Genome editing

Multiple gene editing technologies have been developed in the
past two decades and continue to be improved rapidly. The
overarching concept behind genome editing is that creating
double-stranded breaks (DSBs) at targeted sites in the genome
greatly increases the frequency of mutation and recombination
at those sites. There are numerous reviews summarizing the
early technologies to generate targeted DSBs using homing
nucleases (Salomon and Puchta 1998), zinc finger nucleases
(ZFNs; Kim et al. 1996), and transcription activator-like ef-
fector nucleases (TAL nucleases, also known as TALEN®; Li
et al. 2010; Bogdanove and Voytas 2011). Zinc finger nucle-
ases and TAL nucleases are similar in that they comprise a
cluster of DNA binding domains fused to a nuclease. Methods
using ZFNs or TAL nucleases entail identification of two
binding sites, closely spaced and on opposite strands, and
design and construction of two coding regions. The large size
of vectors with two expression cassettes, combined with the
repetitive nature of the coding sequences, means that there
could be instability of the DNA in bacteria with resulting
difficulties in transformation. One of the few tests of ZFN in
a tree species, Populus, found that it caused a reduced rate of
transformation and gave low rates of mutagenesis (Lu et al.
2015).

Most recently, the focus has been on the CRISPR/Cas9
system derived from an RNA-guided bacterial system for de-
fense against viruses (Jinek et al. 2012). Here, the specificity
of the Cas9 nuclease is directed by a synthetic single guide
RNA (sgRNA). The sgRNA contains a segment of 20 nucle-
otides that can be designed complementary to a very wide
range of target regions in the genome. Cas9 has a relatively
large coding region (approximately 4 kb), but the fact that the
sgRNAs are small (approximately 100 nt) and easily designed
makes the system very convenient for targeting multiple sites
simultaneously (Liang et al. 2017). Tests in poplars have
shown that CRISPR/Cas9 cleavage and nonhomologous end
joining (NHEJ) is very efficient, with most events having
biallelic mutations of the targeted gene (Fan et al. 2015;
Zhou et al. 2015; Elorriaga et al. 2018).

The CRISPR/Cas9 system is quickly becoming the most
adopted tool for genome editing and further improvements are
rapidly being made. As one example, mutations of Cas9
(Kleinstiver et al. 2015) and homologs of Cas9 from other
species (Karvelis et al. 2015; Zetsche et al. 2015) have been
identified with different requirements for binding sequence
context, potentially allowing modification of a wider range
of target sites. In another refinement, there have been recent
demonstrations that Cas9 protein and sgRNA can be

assembled into a ribonucleoprotein (RPN) complex and
bombarded into cells of crops to achieve editing without
Cas9 or guide DNA sequence integration (Svitashev et al.
2016; Liang et al. 2017). This can be very important for tree
biotech where there is limited opportunity to use breeding to
segregate the undesirable DNA sequences away.

The use of CRISPR/Cas9-based gene editing has many
potential applications in biotech research on forest tree spe-
cies. It should be possible to create biallelic knock-outs of
almost any gene at a reasonably high efficiency (e.g., Fan et
al. 2015; Zhou et al. 2015), which are nearly essential for
characterization of gene function in species that are long lived
or cannot be easily self-pollinated. If it becomes possible to
introduce the targeting sgRNAs using viral vectors (Ali et al.
2015), gene knock-out studies could be done even in species
with low transformation efficiency. The previously mentioned
elimination of the citrus genome binding site for a bacterially
coded pathogenesis protein (Jia et al. 2017) and prevention of
floral development (discussed previously) are other recent ap-
plications of gene editing in trees. However, more studies will
be necessary to elucidate whether full or partial inactivation of
the genes involved in wood structure and chemistry, such as
those for lignin biosynthesis that have been widely targeted in
gene suppression studies, would provide satisfactory wood
modification and also normal tree growth and adaptability.

Upregulation (Bknock-in^) of a gene of interest through
simple repair of DSBs seems plausible only in limited cases,
such as by deletion of a known repressor binding site in a
promoter or inactivation of a protein motif for rapid degrada-
tion (such as DELLA or a PEST motif, Rogers et al. 1986;
Peng et al. 2017). In tomato (Solanum lycopersicum L.), the
editing of selected repressor binding domains in meristem
regulatory genes gave a wide variety of modifications to fruit
characteristics (Rodríguez-Leal et al. 2017). In many cases, it
may prove more practical to supplement the endogenous
genes with an overexpression cassette through traditional
transformation methods. In an extension of this, a widely
expressed endogenous gene could be inactivated using a
DSB followed by transformation with a replacement gene
with a more specifically expressed promoter, analogous to
using c4h mutant A. thaliana as a starting point to generate
lines with vessel-specific expression of C4H activity (Yang et
al. 2013).

The repair of DSBs through insertion of DNA via homol-
ogous recombination may provide some of the greatest oppor-
tunity for generating traits of value to forestry. Genes or gene
segments can be swapped out for desired sequences by taking
advantage of this mechanism. As can be seen from examples
discussed in prior sections, commercially valuable traits can
require modification or replacement of promoters (to increase
expression or change an expression pattern) or protein coding
sequences (for example, to enhance resistance to herbicides,
insects, or pathogens). These can be achieved by generating a
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DSB (or pair of DSBs) near the target region while simulta-
neously providing the desired sequence as a linear DNA frag-
ment. This could also, of course, be used to modify an endog-
enous promoter to increase transcription within the normal
context of gene expression, which should reduce unwanted
pleiotropic effects.

Targeted production of DSBs also allows one to bias inser-
tion events of transgenes so that they occur repeatedly at the
same locus, even if only as a single insertion (hemizygosity).
This should have great value as modified genes are used in
breeding programs. If a given insertion event of an exogenous
gene for disease resistance were to be successfully tested in
one genetic background (such as the case of OxO in chestnut),
it should be possible to introduce the same gene into the cor-
responding locus of unrelated genotypes by generating a DSB
at that site—increasing confidence it will express properly.
Such an outcome would then allow homozygous offspring
to be produced in one generation after two genotypes with
hemizygous insertions at the same locus are crossed. This
would simplify inheritance and mitigate linkage drag and in-
breeding depression that could otherwise result from repeated
use of the original resistance event.

The major obstacle to gene replacement and targeted inser-
tion is efficiency. For plant tissues other than cell suspensions,
insertion of DNA via homologous recombination at DSBs
does not occur very frequently. In A. thaliana, when the donor
sequence was provided from a stably inserted transgene, the
targeted insertion rate ranged from approximately 0.1 to 1% of
the NHEJ rate (Fauser et al. 2012). It seems that gene replace-
ment will require some sort of selection system such as an
herbicide resistance gene within the donor sequence. If the
selectable marker were flanked with short, unique, target se-
quences, it might then be efficiently removed by a further
round of cleavage with Cas9 and the requisite sgRNA after
useful lines have been identified.

Transformation improvement

As more powerful molecular tools are becoming available for
targeted gene identification and manipulation, the recalci-
trance of many species and genotypes to transformation and/
or regeneration looms as the major technical limitation to GE
and gene editing. Although there has been significant progress
with transformation of a few commercially important tree spe-
cies, (reviews in Confalonieri et al. 2003; Merkle and Narin
2005; Nehra et al. 2005), most species and genotypes remain
difficult, costly, or for practical purposes impossible to trans-
form with current methods. Table 4 summarizes the recent
progress in developing transformation capability with impor-
tant angiosperm forest tree species.

A significant limitation to transformation is the ability to
identify and regenerate transgenic cells (Maruyama and Hosoi

2015), whether it be through organogenesis or somatic em-
bryogenesis (Campbell et al. 2003). Organogenesis systems
have been the main method for GE of angiosperm forest spe-
cies such as poplars and Eucalyptus. Somatic embryogenesis
has been developed for most of the valuable conifers, such as
some commercially important southern pine and spruce spe-
cies, such as loblolly pine (Pinus taeda) and Norway spruce
(Picea abies; see review Nehra et al. 2005). Somatic embryo-
genesis has also been the vehicle for clonal propagation and
genetic modification for some angiosperm trees such as
sweetgum and American chestnut, both of which have limited
capability to regenerate via organogenesis (Merkle et al. 1991,
1998; Carraway et al. 1994; Merkle and Battle 2000; Nehra et
al. 2005; Polin et al. 2006). Regeneration capacity is highly
species- and genotype-dependent and is negatively associated
with the maturity of trees from which the explants are collect-
ed (Merkle and Narin 2005; Castellanos-Hernández et al.
2011).

The regeneration bottleneck could be greatly reduced if
transgenes could be deployed that would bestow
regenerability on the transgenic cells, and this strategy
appears to be the basis of a recent breakthrough in maize
transformation. Lowe et al. (2016) demonstrated that by over-
expressing the morphogenic genes Baby boom (Bbm) and
Wuschel2 (Wus2) frommaize, theywere able to increase trans-
formation efficiency and enable transformation of previously
extremely difficult genotypes. Moreover, they could use a
wider variety of explants, found that high transformation effi-
ciency could be achieved from experiments using mature corn
seed or seedling leaf explants, and that the rate of embryogen-
ic tissue growth was accelerated (Nardmann and Werr 2006;
Lowe et al. 2016). Furthermore, the team tested and showed
that the same technology worked well with sorghum, sugar-
cane, and rice—demonstrating it was truly a general rather,
than a species- or genotype-dependent, innovation in mono-
cots. Finally, because of the deleterious effects of the morpho-
genic genes on fertility, a drought-inducible recombinase sys-
tem was used to excise the morphogenic genes during regen-
eration or propagation. The recombinase cassette effectively
removed the morphogenic genes at a frequency of 60–89% of
the single-copy T0 events.

This technology should be applicable to forest trees after
adaptation and customization. The effectiveness of morpho-
genic genes on angiosperm plant species was first demonstrat-
ed in dicots, where somatic embryos were induced on various
explants in A. thaliana and other species (Lotan et al. 1998;
Boutilier et al. 2002; Lowe et al. 2002; Zuo et al. 2002; Stone
et al. 2008), and these genes improved regeneration
(Srinivasan et al. 2007; Deng et al. 2009). It is anticipated that
such constructs optimized for angiosperms or conifers can
directly be applied to embryogenesis systems using seeds or
reproductive tissues as explants as was the case in monocots.
Overexpression of a Bbm homolog isolated from T. cacao led
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to embryogenesis in the absence of exogenous hormones
(Florez et al. 2015), and overexpression of Lec2 from cacao
increased the frequency of regeneration of stably transformed
somatic embryos (Zhang et al. 2014). Similar results were
observed in citrus (Citrus sinensis) when a Lec1-like (L1L)
gene was over expressed (Zhu et al. 2014). Maize Bbm and
Wuschel2 stimulated the differentiation of neighboring cells
and promoted a mixture of embryogenic and organogenic tis-
sues (Lowe et al. 2016), suggesting that a similar approach
might also be successful in organogenic systems. The
recombinase/gene induction systems should be directly appli-
cable to trees given the many observations of recombinase
activity (Fladung and Becker 2010), and the long taxonomic
range over which inducible expression systems such as by
abscisic acid, osmotic stress, or heat (among others) can be
effective (e.g., Zhang et al. 2010).

Moving forward

GE innovations have emerged rapidly for trees in recent years,
and there have been a very wide variety of traits demonstrated,
most of which remained consistent over years in field trials. In
addition, adverse (pleiotropic) effects have been uncommon
or confined to specific events or environments. For stress re-
sistance, in addition to detoxification genes that are effective
in chestnut biotic stress resistance, there have been confirmed
successes in citrus and plum using gene editing and/or host-
induced gene silencing. The results from cold and salinity
tolerance studies in the field show that even these complex
abiotic stress resistance traits can be improved by GE ap-
proaches. Studies of cell walls, despite their complex under-
lying physiology and biochemistry, show that wood can be
engineered for improved processing by altering the linkages in
the main polymer backbone, and that this may not require
significant yield penalties, though additional field studies are
needed. Flowering modification studies have demonstrated
that the onset of flowering can be advanced several years,
and this capability has recently been initiated in fruit tree
breeding programs. Field demonstrations of stable floral ste-
rility, without detectable adverse effects on vegetative growth
show that very high, if not complete, genetic containment is
possible, potentially facilitating regulatory and public accep-
tance of GE plantation trees. Directed mutation through
CRISPR-based gene editing systems works as efficiently
and specifically for trees as it does for other crops.
Transcriptomics and other genomic methods are identifying
increasing numbers of genes and regulatory elements that will
enable GE to be more effective and controlled, and to produce
more complex traits. Transformation systems have seen some
major advances very recently, and commercial applications
are in place, or nearly so, in Brazil, China, and the USA.

From a technical viewpoint, the table appears to be set for
significant contributions of GE technologies to forestry.

However, there are also important obstacles to wider use,
both biological and social. Many traits studied to date have
either not been tested under field conditions similar to com-
mercial plantations or have been in too small a sample of
genotypes and environments, or for too limited a time period,
to be confident that there will not be adverse effects on health
or productivity.

Much of the scientific experience is based on one genus,
Populus, because it is more amenable to GE and is grown in
agronomic-style plantations. However, Populus may show
fewer adverse effects than that would be seen in other species.

There is a need for expanded experimentation to support
advanced cell wall and chemical manipulations or synthetic
biology. For instance, manipulation of metabolic pathways
favors major classes of cell wall components or terpenoid
products without harming related physiological processes.

Transformation, including the capacity for gene editing,
remains a major bottleneck for most forest tree taxa. Much
of the knowledge on transformation methods resides as pro-
prietary information within companies, where it is generally
not available for broader progress. Most worrisome perhaps is
that, because there appears to be declining public and private
sector support for forest GE research and training programs in
academia in many countries, there appears to be declining
competence for advancing the field of transformation and in
vitro regeneration studies.

There are also worrisome regulatory and market trends.
Regulations throughout much of the world in essence presume
that the GEmethod is hazardous requiring intensive and costly
examination of each gene insertion event for safety and effi-
cacy. As a presumed hazard, these events must all be fully
contained during the many years to decades of breeding re-
search and testing that is common to forestry—which from a
practical point of view is extremely difficult or impossible in
most cases. To maintain diversity in forests, there is a need to
develop and use dozens of insertion events, not just one or
two. Sterility systems can mitigate this problem, but in most
cases, such a draconian measure is inappropriate or its cost to
breeding or biodiversity is so high that it would create a larger
problem than it solves (Strauss et al. 2017). The annual-crop-
oriented, and highly politicized, regulatory system for GE
crops is an extremely poor fit for the realities of most forestry
programs and this situation has been exacerbated by interna-
tional conventions (Strauss et al. 2009; Viswanath et al.
2012). Finally, the added costs imposed by regulations can
nullify any advantages from genetic modification over tradi-
tional breeding (Castellanos-Hernández et al. 2011).

Perhaps gene editing, at least, type I mutagenesis or simple
knockout or dropout mutations, might have a simpler path for
regulatory approval. In the USA, the US Department of
Agriculture has advised that they will not regulate plants if
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they could have been developed using traditional methods
when they are not considered Bplant pest risks^ (Waltz
2016a, b). However, complete removal of the gene editing
machinery after mutagenesis of target loci is difficult in trees,
as segregation of them away in progeny would be time con-
suming and require that elite clonal genotypes are reshuffled.
Recombinases, as discussed above, might be an option when
somatically induced, if the resulting small and inert footprint is
not considered a regulatory trigger. Ribonucloprotein types of
technology (Svitashev et al. 2016), where editing machinery
does not become inserted into the genome, is another option, if
it can bemade towork efficiently and in a variety of genotypes
and give manageable levels of chimerism—very considerable
challenges. If gene editing is subject to the same stringent
regulations as are other types of GE trees, it too will be very
difficult to use for forestry.

Market limitations in the form of forest certification now
cover most of the major forestry operations in the world.
However, all the major certification programs have banned
all GE trees from use in the field, and in the international
systems this is true even for research and regardless of wheth-
er they have obtained governmental authorization (Strauss et
al. 2015). This makes it difficult and costly for companies to
conduct research or breeding studies with GE trees and sends
a strong signal that GE will not be accepted in the market and
that investment in research and development is not worth-
while. The extreme costs and inertia of the current social con-
trol systems—both certification and regulation—are
underlined by the inability of GE methods to be applied to
help solve tree health problems (Strauss et al. 2015), which
have reached crisis levels in numerous areas (Sugden et al.
2015). While there are no simple answers to the problem of
public concern over GE-related technologies and the associ-
ated market and regulatory barriers, further engagement by
scientists with the public would seem to be an important part
of any solution. This engagement should address not just lit-
eracy about the genetic aspects of modifications but also con-
cerns over the larger social and ecological context in which the
modifications are used. Field trials and commercial demon-
strations are particularly valuable engagement tools, and of
course provide places for studies of trait value and ecological
impact.

In summary, the technical progress in GE of forest trees,
despite very hostile conditions common to all GE crops over
the last two decades, has been extraordinary. Many distinct
types of applications show great promise based on advanced
lab, greenhouse, or field research. However, the inability to
effectively apply GE and gene editing methods to a wide
variety of species and genotypes, and extremely adverse reg-
ulation and market conditions, severely constrain the ability to
apply these advances to commercial forestry on a significant
scale. The biological limitations are largely soluble with con-
tinued research. However, a fundamental change in social

conditions and public acceptance is also needed. This includes
changes in regulations and market signals to create an envi-
ronment conducive to accelerated research and commercial
development. The growing demands on forests for products
and ecological services—under an increasingly antagonistic
and variable climate—justify a fundamental change of course.
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