Using next-generation hop breeding tools to develop more flavorful and sustainable cultivars

UNITED WE BREW

Presenters

- Nicholi Pitra Lead Research Scientist,
 - Variety Development and Bioinformatics | Hopsteiner
- Dr. John Henning Research Geneticist | USDA-ARS
- Dr. Ryan Christian VP of Research | Yakima Chief Ranches
- Dr. Steve Strauss University Distinguished Professor | Oregon State University

Potential for CRISPR/gene-editing in hop breeding

Prof. Steve Strauss | OSU (Presenting Author) Dr. Chris Willig | Postdoctoral Scholar – OSU Steve.Strauss@oregonstate.edu

UNITED WE BREW

• What is CRISPR

- Where could it fit in breeding
- What are the challenges

Gene editing defined

- "Stuff" you insert to change <u>other</u> genes
- Highly specific,
 efficient modification
- CRISPR main method
- Works everywhere!

Crispr is a big deal in science

Nobel Prize in Chemistry 2020 Emmanuelle Charpentier & Jennifer Doudna

<u>Concept</u>: Gene edit or engineering (GE) vs. breeding

Steps to create an edited plant

- Editing genes added to cells by biological agent or "gene gun"
- Find modified cells using bio-tricks!
- Regenerate cells into uniform modified plant with edits
- Segregate or excise the gene-editing agents away, if desired

Relationship of breeding and biotech

<u>Polygenic</u>: Growth rate and adaptation, many traits <u>Oligogenic</u>: Specific modifications and novel traits

Life cycle of hop variety development (12-15 Yr)

(Courtesy of John Henning)

Biological challenges

- What genes control key traits?
 - Often unknown, but CRISPR a great way to find out
- Better, faster, and less genotype-specific gene transformation methods needed
 - Important for integration with breeding, maintaining diversity
- Desire to remove or avoid CRISPR genes in final product

– Makes the transformation, regeneration methods more challenged

TRANSGENIC CASCADE PRODUCED AT OSU – KEY TOOL FOR GENE EDITING IS IN HAND

Some of our GRANT-proposed gene editing goals

- Mildew resistance
- Enhanced xanthohumol as a pharmaceutical source

Gene/s controlling alpha-acid levels

Modified terpene levels

Social challenges

- Economics
 - Cost of research
 - Financial benefits
- Legal
 - Regulatory approvals (USA, trade)
 - Patent licenses
- Market
 - -"GMOitis" even if not or hardly GMO?

- USDA-NIFA grant #2021-67013-34739
- Our hop research team

