# CRISPR/Cas9 mutagenesis for genetic containment of forest trees



## Background

- Introduction of transgenic forest trees for field research or commercial use is a challenge due to potential outcrossing to wild and feral populations
- These challenges could be ameliorated through genetic containment of transgenic trees by induction of bisexual sterility in these asexually propagated perennial crops
- Gene editing technologies such as CRISPR/ Cas9 have the potential to rapidly generate novel genotypes which are unable to form floral organs, viable pollen, or embryos

### **Objectives**

- Investigate efficacy and stability of modified floral developmental genes as tools for mitigating or preventing transgene spread using CRISPR/Cas9
- Study the frequency of off-target mutagenesis in CRISPR/ Cas9 transgenics
- Develop site-specific excision systems for somatic removal of CRISPR/Cas9

### **Research Status**

- Selected five genes that are essential to normal reproductive development (AG, LFY, EDA33, REC8, TDF1, and HAP2)
- Re-transformed FT overexpressing eucalypts with CRISPR/Cas9 to speed fertility analysis
- Performed greenhouse studies to assess fertility (FT events) and growth/morphology Established poplar field trials near Corvallis, OR; planted in the fall of 2017, with WT,
- edited predicted KOs/Hets, Cas9-only transgenics, and unedited but transgenic trees in 353 (male *P. tremula x tremuloides*) and 717 (female *P. tremula x alba*) backgrounds, with 80 total trees per genotype
- Developing methods for somatic removal of gene editing components using site-specific recombinases: we are building vectors compatible with existing gene editing tools and are still in the cloning phase and testing suitable promoters
- Will be detecting if any off-target mutations were generated during the editing process; we are using a targeted (bait-based) sequencing approach that will begin in July 2019

## Successful generation of flowering gene knockouts in poplar and eucalypts

Homologs of characterized genes involved in sexual development were targeted for editing

| Gene  | Function                            | Predicted Phenotype |
|-------|-------------------------------------|---------------------|
| AG    | Stamen and carpel development       | Bisexual sterility  |
| LFY   | Transition to flowering             | Bisexual sterility  |
| REC8  | Chromosome structure during meiosis | Bisexual sterility  |
| EDA33 | Seed pod valve development          | Female sterility    |
| TDF1  | Tapetal development                 | Male sterility      |
| HAP2  | Pollen tube guidance                | Male sterility      |

Leaf and stem explants from poplar and eucalypts were transformed with constructs targeting the above loci, to obtain 396 and 198 number of transgenic events, respectively. Transformation rates averaged 16.2% in poplars and 2.23% in eucalypts. High rates of editing amongst the transgenic events were obtained. The lowest rate was 66% and the highest rates were at 100%

### Typical mutations observed are short indels and large deletions ► EgLFY



\*Greg S. Goralogia<sup>1</sup>, \*Estefania Elorriaga<sup>1</sup>, Michael Nagle<sup>1</sup>, Michael I. Gordon<sup>1</sup>, Haiwei Lu<sup>1</sup>, Cathleen Ma<sup>1</sup>, Surbhi Nahata<sup>1</sup>, Bahiya M. Zahl<sup>1</sup>, Anna Magnuson<sup>1</sup>, Amanda L. Goddard<sup>1</sup>, Amy L. Klocko<sup>2</sup> and Steven H. Strauss<sup>1</sup> \*co-first author

> <sup>1</sup>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331 <sup>2</sup>Department of Biology, University of Colorado, Colorado Springs, CO 80918

> > Greg.Goralogia@oregonstate.edu

# *leafy* mutants in *Eucalyptus* fail to form floral meristems

**Developmental sequence of flower formation in** *Eucalyptus* 



Eglfy mutant, Cas9ox, AtFTox

Downstream regulators failed to express in *lfy* mutants, and *lfy* and upstream regulators were overexpressed



# Field and greenhouse-grown edited trees show similar growth phenotypes to controls

### Poplar field tests ongoing for *lfy* and *ag*



### **Internal structures** underdeveloped



### Floral KOs effective for bisexual sterility

- Mutations in floral specification genes have the intended sterility effect predicted from model systems
- *Ify* mutants in *Eucalyptus* form indeterminate flowers with bisexual sterility
- **a**g mutants and *lfy* mutants in poplar fast flowering lines are ready to be tested soon in the greenhouse
- *Eucalytpus* lines currently being tested in South Africa to confirm similar phenotypes





# **Eucalyptus Ify KOs grow without** detectable vegetative modification

- tion of sexual sterility in forest trees
- similarly to analogous mutants in other plant species
- iting process
- rently developing this system

- and Agriculture
- We also gratefully acknowledge the former Tree Biotechnology and Genome Research Cooperative (TGERC) and the upcoming Genetic Research on Engineering and Advanced Transformation of Trees (GREAT TREES) cooperative for their support